An observational view of particle acceleration in cosmic ray sources

Jacco Vink

CRISM Montpellier, June 2014

GRavitation AstroParticle Physics Amsterdam

The Cosmic Ray Spectrum

The origin of Galactic cosmic rays

In order for SNRs to be the source of Galactic cosmic rays, two criteria need to be satisfied:

- 1. SNRs should put 5-10% ($\simeq 10^{50}$ erg) of kinetic energy in cosmic rays
 - → when do they do this, early, young, or Sedov stage?
 - → should collective effects be considered (super bubbles?→Bykov)

2.SNRs should be able to accelerate particles to $>3 \times 10^{15} eV$

→ where are the Galactic Pevatrons?

Early evidence for particle acceleration by SNRs

- Supernovae associated with cosmic rays since Baade & Zwicky (1934)
- Development of radio astronomy (1950-1960): SNRs are radio synchrotron sources
- Since 1960ies: SNe sources of energy, but acceleration in SNR stage
- Important source: Cas A
- Too strong a radio source to explain with compression pre-existing electrons (van der Laan mechanism)
- Important: radio synchrotron radiation → electrons of at least ≈1-10 GeV
 What about protons, and what about the cosmic ray knee?

Radio polarization of young vs mature SNRs

Radial magnetic fields

 Emission due to recently accelerated electrons

Dickel & Milne '96

Tangential magnetic fields

•Flux can be explained by Van der Laan mechanism (compression of pre-existing electron cosmic rays)

Diffusive shock acceleration

- Particles scatter elastically (B-field turbulence)
- Each shock crossing the particle increases its momentum with a fixed fraction ($\Delta p = \beta p$)
- Net movement downstream (particles swept away from shock)
- Resulting spectrum:

 $dN/dE = C E^{-(1+3/(X-1))}$

with X shock compression ratio, $X=4 \rightarrow dN/dE = C E^{-2}$

Axford et al., Blanford & Ostriker, Krymsky, and Bell (all 1977-78)

Diffusive shock acceleration

• Length scale for which diffusion dominates over advection:

$$l_{\text{diff}} = \sqrt{2Dt}, \ l_{\text{adv}} = vt$$

$$\Rightarrow l_{\text{diff}} = \frac{2D}{v}, \ t_{\text{diff}} = \frac{2D}{v^2}$$

- t_{diff} is typical time scale for particle to cross shock
- Smaller mean free path, smaller D, faster acceleration
- Bohm diffusion ($\eta=1$):

$$\lambda_{\rm mfp} = r_{\rm gyro}$$
$$D = \eta \lambda_{\rm mfp} \frac{1}{3}c = \eta \frac{cE}{3eB}$$

- $\bullet\,\text{Typical}$ magnetic field in the Galaxy $10\mu\text{G}$
- Fast acceleration need strong, turbulent magnetic field!

Can SNRs accelerate up to the knee?

The maximum energy of cosmic rays accelerated by supernova shocks

P. O. Lagage and C. J. Cesarsky

Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, Bât. 28, F-91191 Gif-sur-Yvette Cedex, France

Received February 28, accepted April 11, 1983

Summary. The aim of this paper is E_{max} that particles subjected to acceleration can acquire during remnant. The rate of acceleration (coefficient, which is determined by energy present at a scale comparat We study the variations of the dim

1983:

Thus supernova shock acceleration cannot account for the observed spectrum of galactic cosmic rays in the whole energy range 1-10⁶ GeV/n.

We study the variations of the dimusion coefficient as a runction of momentum, space, and time.

In the most optimistic case, the diffusion mean free path is everywhere comparable to the particle Larmor radius; then $E_{\rm max} \sim 10^5$ GeV/n. Considering a more realistic behaviour of the diffusion coefficient, we obtain $E_{\rm max} \leq 10^4$ GeV/n. Thus, supernova shock acceleration cannot account for the observed spectrum of galactic cosmic rays in the whole energy range 1–10⁶ GeV/n.

Key words: cosmic-ray acceleration – shock waves – hydromagnetic waves

Discovery of X-ray synchrotron emission

- In 1995 ASCA X-ray satellite: X-ray synchrotron emission from SN 1006 (Koyama et al. 1995)
- What determines the maximum synchrotron photon energy?
 - time available for accelerating electrons
 - acceleration gains = synchrotron (+IC) losses
 - electrons escape above certain energy

- → age limited spectrum
- → loss limited spectrum
- → escape limited spectrum

Loss-limited X-ray synchrotron spectra

• Synchrotron loss-time

$$\tau_{\rm syn} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\rm eff}}{100 \mu \rm G}\right)^{-2} \,\mathrm{yr}$$

• Diffusive acceleration time (depends on diffusion coeff. D, compression X)

$$\tau_{\rm acc} \approx 1.83 \frac{D_2}{V_{\rm s}^2} \frac{3\chi^2}{\chi - 1} = 124\eta B_{-4}^{-1} \left(\frac{V_{\rm s}}{5000 \,\,{\rm km \, s}^{-1}}\right)^{-2} \left(\frac{E}{100 \,\,{\rm TeV}}\right) \frac{\chi_4^2}{\chi_4 - \frac{1}{4}} \,\,{\rm yr}$$

• Equating gives expected cut-off for loss-limited case (e.g. Aharonian&Atoyan '99)

$$h\nu_{\rm cut-off} = 1.4\eta^{-1} \left(\frac{\chi_4 - \frac{1}{4}}{\chi_4^2}\right) \left(\frac{V_s}{5000 \,\,\rm km\,s^{-1}}\right)^2 \,\rm keV$$

- NB loss limited case:
 - frequency cut-off independent of B!!
 - Strongly dependent on V_s

All young (100-1000 yr) SNRs show X-ray synchrotron radiation

Implications of X-ray synchrotron emission

• Acceleration must proceed close to Bohm-diffusion limit!

 $\eta \lesssim 10$

- The higher the B-field → faster acceleration, but for electrons: E_{max} lower!
 For B=10-100 µG: presence of 10¹³-10¹⁴ eV electrons
- Loss times are:

$$\tau_{\rm syn} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\rm eff}}{100 \mu \rm G}\right)^{-2} \rm yr.$$

X-ray synchrotron emission tells us that
electrons can be accelerated fast
that acceleration is still ongoing (loss times 10-100 yr)
that particles can be accelerated at least up to 10¹⁴ eV

Narrowness of X-ray synchrotron filaments

- In many cases X-ray synchrotron filaments appear very narrow (1-4")
- Including deprojections implies l≈10¹⁷cm

Narrowness X-ray synchrotron filaments: high B-fields

High B-field likely induced by cosmic rays (e.g. Bell '04)
High B-fields are a signature of efficient acceleration
Optimistic scenario of Lagage & Cesarky seems to be realistic!

Vink&Laming '03

Magnetic field amplification

- Clear correlation between ρ , V and B
- In rough agreement with predictions (e.g. Bell 2004)
- Relation may even extend to supernovae ($B^2 \propto \rho Vs^3$?)

(Völk et al. '05, Vink '08)

• SNRs: little dynamic range in V_s

Age-limited vs Loss-limited electron/photon spectra

Acceleration @ Cas A reverse shock

- Spectral index: 2 regions of hard emission: X-ray synchrotron emission
- Deprojection: Most X-ray synchrotron from reverse shock!
- Prominence of West: No expansion \Rightarrow ejecta shocked with V>6000 km/s
- Reverse shock: metal-rich → more electrons → bright radio

B-field amplification is not very sensitive to initial B-field!

Time varying X-ray synchrotron radiation

Cas A (Patnaude+ 2007,09)

RX J1713 (Uchiyama+ 2007)

- Cas A & RX J1713 show X-ray synchrotron fluctuations
- Time scales: a few years

Two possible explanations

Two possibilities suggested in the literature:

1.Time scale corresponds with acceleration time=synchrotron loss time Time scales of years imply B>100 µG (Uchiyama+ '07)

$$\tau_{\rm syn} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\rm eff}}{100 \mu \rm G}\right)^{-2} \rm yr.$$

- 2.Time scale corresponds with plasma wave passing by (Bykov+ '08)
 There is a spectral distribution of waves (larger waves small amplitude)
 Radio emission less sensitive to B-field fluctuations
 - X-ray synchrotron (beyond break) very sensitive

$$N_{\rm e} \propto K E^{-q}, \ I_{\nu} \propto K B^{(q+1)/2} \nu^{-(q-1)/2}$$

The coming of age of Gamma-ray observatories: Cherenkov Telescope (TeV) and the Fermi and Agile satellites (GeV)

- Gamma-ray photons give more direct proof of high energy particles:
 - E_{photons} ≈ 10% E_{particles}
- Gamma-rays can provide direct proof for accelerated ions (hadronic cosmic rays)

Gamma-ray radiation processes

Some young SNRs in TeV gamma-rays

Interpretation problems in practice

- Debates on the nature of most TeV SNRs
- Most heated: RXJ1713 and Vela Jr
- Heated debates on gamma-ray emission
 - pion decay:requires high densities/high B-fields

Adding Fermi: case solved?

- Fermi detected RX J1713 in GeV range
- Caveat: Galactic plane contamination
- Spectral shape suggests inverse Compton origin of GeV/TeV emission
- Has controversy ended?
 - More data/scrutiny needed
 - IC models do not fit very well TeV-end of spectrum
 - Hadronic model does not follow initial predictions
 - Hadronic model may still be valid with more complicated scenarios: dense clumps in empty cavity

```
(Inoue+ 2013, Gabici&Aharonian '14)
```


Clumpy medium

Inoue+ 2013, Gabici&Aharonian '14

HESS J1640-465: an exceptionally gamma-ray luminous SNR

Abramowski+ '11

- Joint H.E.S.S.- Fermi spectrum much steeper than RXJ1713→hadronic more likely
- High densities surrounding large SNR: explosion in a cavity?
- Pion-decay emission from surrounding regions?
- Some controversy: could gamma-ray emission come from pulsar (Gotthelf+ '14)

Cas A vs Tycho in gamma-rays

•E_{cr}< 4% E_{expl}

•E_{cr} ≈ 10% E_{expl}

Contrary to expectations the Type Ia SNR seems better in cosmic ray acceleration! Or: is escape or environment?

Clear evidence for hadronic emission from mature SNRs

- EGRET: tentative evidence for SNR/mol. cloud associations (Esposito+ '96)
- Fermi + AGILE: many GeV detections!!
- Most prominent sources: SNRs interacting with molecular clouds
 - Examples: W44, W28, IC443
- Spectral shapes (W44/IC443):
 - Pion decay (Guiliani+ 11, Ackerman)
 - Cut-off energies 10¹⁰-10¹¹ GeV
 - Suggests highest energy CRs escaped

W44, Guiliani+ '11 (AGILE)

Fermi detection of pion bumps

Ackermann+ 2013

Conclusion: Mature SNRs contain accelerated protons But are past their prime concerning acceleration to high energies!

Molecular clouds interacting with cosmic rays near SNR: W28

- Mature SNRs in general not TeV sources
- Perhaps surprising if TeV is hadronic and no cosmic-ray escape!
- The TeV detections of mature SNRs are SNRs/ molecular cloud associations!
- Interesting example: W28, offset between SNR and TeV source(s)
- General conclusion: highest energy (hadronic) cosmic rays seem to have escaped
- See also theoretical work by Gabici et al., Torres et al

W28 region colors: CO contours: TeV

Signatures of efficient acceleration

Mix of thermal and non-thermal pressure

- What could be the signatures of efficient acceleration?
- Efficient acceleration results in non-linear shock structures:
 - Precursor region + heating
 - Lower post-shock plasma temperatures
 - Higher shock compression ratios

Results of simple Rankine-Hugoniot extensions

32

Evidence for high compression ratios

- X-ray evidence for Tycho's SNR:
 - Ejecta too close to shock front →need high compression ratio!
- SN1006: effect seen as well (even outside X-ray synchrotron rims)
- Caveat:
 - hydro-instabilities (Rayleigh-Taylor fingers) & clumpy ejecta may also bring ejecta close to forward shock → Orlando+ '12
 - expect harder gamma-ray spectra: not seen!

Decourchelle&Ellison '01, Warren+ '05, SN 1006: Cassam-Chenai+ '08

What about lower temperatures?

- In general measured temperatures too low (X-rays)
- Measured kT = electron temperature
- What about protons?
- Can measure proton temperatures from thermal Doppler broadening
- Relies on presence of neutrals entering the shock:
 - Charge exchange \rightarrow H α line emission
 - Raymond+ '11, Blasi+ '12, Morlino+ '13/'14

H-a from fastest known SNR shock

Helder, Kosenko, Vink '10

- Distance known (LMC, 50 kpc)
- Shock velocity: X-ray line broadening + Chandra expansion: V_s> 5000 km/s
- One of the fastest shocks in a known SNR
- J.P. Hughes private communication V_s =6500 km/s
- H-alpha broad line widths: $2680 \pm 70 \text{ km/s}$ (SW), $3900 \pm 800 \text{ km/s}$

A measurement of the cosmic-ray efficiency in a fast supernova remnant shock 0509-675

- Distance known (LMC, 50 kpc)
- Shock velocity: X-ray line broadening + Chandra expansion: Vs> 5000 km/s
 - One of the fastest shocks in a known SNR!
- H α broad line widths: 2680 ± 70 km/s (SW), 3900 ± 800 km/s
- Discrepancy in kT: kT_{measured}/kT_{exp}≤0.7
- Hence: cosmic-ray efficiency w≥25%

Summary and conclusions

- For SNRs to be the sources of Galactic cosmic rays:
 - 5-10% of explosion energy in cosmic rays
 - acceleration of protons beyond the knee
- No full proof (yet) that SNRs satisfy criteria, but a lot of progress made:
 - X-ray synchrotron emission young SNRs
 - → Acceleration electrons beyond 10 TeV
 - \rightarrow Requires turbulent magnetic field η < 10
 - \rightarrow Narrow rims \rightarrow high B-fields \rightarrow fast acceleration
 - TeV Gamma-rays
 - \rightarrow >10 TeV particles present
 - → Debate over nature emission (inverse Compton vs Pion decay)
 - GeV gamma-rays
 - → few clear cases for pion decay → protons accelerated
 - → mature SNRs: cut-off around 10 GeV
 - → Spectrum affected by cosmic ray escape: acceleration early on
 - Cosmic-ray acceleration efficiency
 - → High compression ratios: inconclusive evidence
 - → Optical emission: hints for ≈25% acceleration efficiency