

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Transport Equation

Propagation

Ralf Kissmanr

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Individual Terms

CR sources

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

- CR sources
- Spatial / momentum diffusion

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

- CR sources
- Spatial / momentum diffusion
- Spatial convection

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Loss terms

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Individual Terms

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Loss terms

Result

 $\bullet~{\rm CR}{\rm -distribution}~\psi$

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Individual Terms

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Loss terms

Result

• CR-distribution ψ

 \rightarrow input for gamma rays

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Individual Terms

- CR sources
- Spatial / momentum diffusion
- Spatial convection
- (Adiabatic) energy changes
- Inter-species reactions
- Loss terms

Result

- CR-distribution ψ
 - ightarrow input for gamma rays

Solution

- $\bullet \ \ \mathsf{Simplifications} \rightarrow \mathsf{analytical}$
- General case \rightarrow numerical

Major Codes

- semi-analytical:
 - Usine

Transport in ISM

Code

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - Galprop

Transport in ISM

Code

Major Codes

- semi-analytical:
 - USINE
- fully numerical
 - Galprop
 - DRAGON

Transport in ISM

Code

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - Galprop
 - DRAGON

Other Approaches

- Büsching et al.
- Effenberger et al.
- Hanasz et al. (PIERNIK)

Transport in ISM

Major Codes

- semi-analytical:
 - Usine
- fully numerical
 - GALPROP
 - DRAGON

Other Approaches

- Büsching et al.
- Effenberger et al.
- Hanasz et al. (PIERNIK)

Transport in ISM

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Propagation

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Secondaries

- Secondary CRs
- Gamma rays

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Secondaries

- Secondary CRs
- Gamma rays

Solution Process CR source distribution

Propagation

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Galaxy Model

- Matter distribution
- ISRF
- Magnetic field

Interaction with ISM

- Spallation cross sections
- Energy loss processes
- Nuclear network

Secondaries

- Secondary CRs
- Gamma rays

Solution Process CR source distribution ↓ Transport solver

Propagation

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

CR Distribution

Secondaries

- Secondary CRs
- Gamma rays

Transport Processes

- Convection
- Diffusion
- Momentum diffusion

Gamma Ray Emission

Secondaries

- Secondary CRs
- Gamma rays

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

• Physics as parameters

Transport Parameters

- Source distribution $q(\mathbf{r},p)$
- ${\ensuremath{\, \bullet \,}}$ Diffusion tensor ${\ensuremath{\mathcal D} \,}$
- Momentum diffusion D_{pp}
- ${\ensuremath{\, \bullet \,}}$ Spatial convection ${\ensuremath{\, v}}$
- $\bullet~{\rm Energy}~{\rm losses}~\dot{p}$
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
 - Constant in time
 - Constant in space
 - \rightarrow Parameter tuning

Transport Parameters

- Source distribution $q(\mathbf{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection \mathbf{v}
- $\bullet~{\rm Energy}~{\rm losses}~\dot{p}$
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
 - Constant in time
 - Constant in space
 - $\rightarrow~\mathsf{Parameter}$ tuning
- Diffusion
- Convection
- Halo height

Transport Parameters

- Source distribution $q(\mathbf{r},p)$
- Diffusion tensor ${\cal D}$
- Momentum diffusion D_{pp}
- Spatial convection \mathbf{v}
- $\bullet~{\rm Energy}~{\rm losses}~\dot{p}$
- Spallation τ_f

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
 - Constant in time
 - Constant in space
 - $\rightarrow~\mathsf{Parameter}$ tuning
- Diffusion
- Convection
- Halo height

Technical Issues

- Solver
- Local structure ↔ spatial resolution
- Consistency

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Physics Issues

- Physics as parameters
 - Constant in time
 - Constant in space
 - $\rightarrow~\mathsf{Parameter}$ tuning
- Diffusion
- Convection
- Halo height

Technical Issues

- Solver
- Local structure ↔ spatial resolution
- Consistency

Iss

Diffusion in Galprop

- Isotropic
- No spatial variation

CRs Inside the Heliosphere

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

CRs Inside the Heliosphere

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

Field Aligned Diffusion

$$\mathcal{D}_B = \left(\begin{array}{ccc} D_{\parallel} & 0 & 0 \\ 0 & D_{\perp,1} & 0 \\ 0 & 0 & D_{\perp,2} \end{array} \right)$$

CRs Inside the Heliosphere

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

CRs Inside the Heliosphere

Diffusion in Cartesian Coordinates

$$\mathcal{D} = \left(\begin{array}{cc} D_{\parallel} \cos^2 \psi + D_{\perp} \sin^2 \psi & \left(D_{\parallel} - D_{\perp} \right) \sin \psi \cos \psi & 0 \\ \left(D_{\parallel} - D_{\perp} \right) \sin \psi \cos \psi & D_{\parallel} \sin^2 \psi + D_{\perp} \cos^2 \psi & 0 \\ 0 & 0 & D_{\perp} \end{array} \right)$$

Diffusion in Galprop

- Isotropic
- No spatial variation
- Alternatives:
 - DRAGON, PICARD
 - Effenberger et al.

Boundary conditions?

- $\bullet \ \ \mathsf{Diffusion} \leftrightarrow \mathsf{advection}$
- Energy dependence
- Galprop:
 - Restricted to box
 - $\psi = 0$ at boundary

The Galaxy

(artist sketch by NASA)

Propagation

• Azimuthally symmetric

S

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r},p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r},p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p}\psi - \frac{p}{3} (\nabla \cdot \mathbf{v})\psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Propagation

alf Kissmanı

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Standard Approach

- Time integration
 - Solve multiple time steps
 - Characteristic time-scales
 - Convergence to steady state

ıes

Ralf Kissmann

Transport Equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left\{ \dot{p} \psi - \frac{p}{3} (\nabla \cdot \mathbf{v}) \psi \right\} - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Type of Equation

• Diffusion-advection equation

Abbreviation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

Possible Solutions

- Time-dependent
- Steady state

Standard Approach

- Time integration
 - Solve multiple time steps
 - Characteristic time-scales
 - Convergence to steady state

\rightarrow Time-integration solver

Propagation

talf Kissmanı

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based

Steady State

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Explicit schemes

$$\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^n)$$

- Easy to solve
- Time step restriction

Implicit schemes $\frac{\partial \psi}{\partial t} = f(\psi) \rightarrow \frac{\psi^{n+1} - \psi^n}{\Delta t} = f(\psi^{n+1})$

- Coupled matrix equation
- Larger time step

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Propagation

Steady State

CRISM 20

Possible Solvers

- SDEs / Monte Carlo
 - (Pseudo-) particles
- Grid-based
 - Explicit
 - Implicit

Solution Approach

- Start with empty Galaxy
- Integrate until convergence

Problem

- Characteristic timescales
- Convergence timescales

Time Evolution of Spectrum

Characteristic time: ${\sim}50~{\rm yrs}$

Propagatio

Steady State

Ralf Kissmann

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

• Check for convergence?

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control
- Problem dependent?

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Problems

- Check for convergence?
- Timestep control
- Problem dependent?
- Nuclear reaction network

Numerical Implementation

- Crank-Nicolson discretisation
- Time-integration
- Dimensional splitting
- Decreasing timesteps

Galprop

Problems

- Check for convergence?
- Timestep control
- Problem dependent?
- Nuclear reaction network

ightarrow Let's do better

Ralf Kissmanr

How to do better

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$\frac{\partial \psi}{\partial t} = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D} \nabla \psi - \mathbf{v} \psi) + \frac{\psi}{\tau}$$

How to do better

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

Discretisation

Propagation

Ralf Kissmanr

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation
 - \rightarrow Band-diagonal matrix

Discretisation in 1D $\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$ $\simeq D_{xx} \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$ $\rightarrow a_i \psi_{i-1} - b_i \psi_i + c_i \psi_{i+1} = -s_i \quad \forall i$

 $\begin{aligned} & \mathsf{Descretisation in 2D} \\ & \nabla \mathcal{D} \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2} + D_{yy} \frac{\partial^2 \psi}{\partial y^2} \\ & \simeq D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2} \\ & + D_{yy} \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j+1}}{\Delta y^2} \end{aligned}$

Ralf Kissman

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow\,$ Coupled matrix equation
 - \rightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

Discretisation in 1D $\nabla D \nabla \psi = D_{xx} \frac{\partial^2 \psi}{\partial x^2}$ $\simeq D_{xx} \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$ $\Rightarrow a_i \psi_{i-1} - b_i \psi_i + c_i \psi_{i+1} = -s_i \quad \forall i$

$$\begin{split} \textbf{Descretisation in 2D} \\ \nabla \mathcal{D} \nabla \psi = & D_{xx} \frac{\partial^2 \psi}{\partial x^2} + D_{yy} \frac{\partial^2 \psi}{\partial y^2} \\ \simeq & D_{xx} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta x^2} \\ & + D_{yy} \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j+1}}{\Delta y^2} \end{split}$$

Ralf Kissmanr

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow\,$ Coupled matrix equation
 - \rightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

Propagation

Ralf Kissmann

How to do better

A Different Approach

• Solve steady state problem

Simplified Transport Equation

$$0 = s(\mathbf{r}, p) + \nabla \cdot (\mathcal{D}\nabla\psi - \mathbf{v}\psi) + \frac{\psi}{\tau}$$

Difficulty

- Discretisation
 - $\rightarrow~$ Coupled matrix equation
 - \rightarrow Band-diagonal matrix
- Iterative solver
 - Multigrid
 - BICGStab

Multigrid Implementation

- Red-black Gauss-Seidel
- Alternating plane
 Gauss-Seidel

Propagation

Cosmic Particle Transport: THE NEXT GENERATION

Contents lists available at ScienceOlem

Astroparticle Physics journal homopope: www.elsevier.com/locate/astropart

Ж

PICARD: A novel code for the Galactic Cosmic Ray propagation problem Countral Countral

R. Kissmann

ABSTRACT

Attick Many: Roowed 10 leptember 2011 Reviewd in reviewd hern 10 Jamaay Aeropod 3 February 2014 Analable online 15 February 2014 Keyword): Canada Kays Method e memorical Offician

In this manuscript we present a new appreach for the manuscript adultion of the Galaxie Countie Ray propagation problem. We introduce a net find a sing advanced onto paysary manuscript algorithms while making the ground complexity of other multibleted advances. In this payer we present the underlying materials (ketter in complexity or white toxis showing the correctness of the scheme. Finally we show the unbiased of the sample aroungation problem using therease on the body with spatiality to Galaxie the unbiased of the sample aroungation problem using the revene on the body of a singlificability to Galaxie.

© 2014 Ebevier B.V. All sights reserved.

1. Introduction

The Galactic Cosmic Bay propagation problem, i.e., the question how Cosmic Rays are transported from their sources to arbitrary incations in the Galaxy, becomes ever more relevant with recent advances in observational techniques. Such observations yield the flux of primary Cosmic Rays (see, e.g., 0.12.2.3) or doo of secwebed in Cosmic Ray transport. The transport of Galactic Cosmic Rays is a diffusion-loss prob-

ion wantport of tallactic connec may in a carbaiton-loss prob-lem (see [15]). That is we have to find a solution of the partial dif-ferential equation:

 $\frac{\partial \phi}{\partial t} = \nabla \cdot (\mathcal{D}^{(2)} \phi) + \nabla \cdot (\bar{u} \phi) - \frac{\partial}{\partial u} \left(p^2 D_{\mu\nu} \frac{\partial}{\partial u} \frac{\phi}{p^2} \right)$ $+ \frac{\partial}{\partial \omega} \left(\hat{\mathbf{y}} \boldsymbol{\psi} - \frac{p}{s} (\nabla \cdot \hat{\mathbf{u}}) \boldsymbol{\psi} \right) = s(\vec{\mathbf{y}}, p, c) - \frac{1}{s} \boldsymbol{\psi}$

losses by fragmentation and sublicactive decay for the current This partial differential equation has been solved using dif-

With the increasing precision of Galactic Countic Ray such numerical codes like Uses (see [11]) that use codes aim at finding the best values for the variables

APh Vol.55 (2014)

Features of **PICARD**

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
 - $\rightarrow~$ High resolution
- Improved nuclear network
- Speed

Features of **PICARD**

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
 - \rightarrow High resolution
- Improved nuclear network
- Speed

Example Resolution

- Standard GALPROP
 - $\rightarrow~$ 2D (1 kpc \times 100 pc)
- Picard
 - $\rightarrow~$ 3D (up to ${\sim}75~{\rm pc}^3)$

Example Simulation Results

Picard

Features of **PICARD**

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
 - \rightarrow High resolution
- Improved nuclear network
- Speed

Physics

- 3D source distributions
- Anisotropic diffusion

• tbd...

Example Simulation Results

Features of **PICARD**

Solver

- Steady-state solution
- Explicit time integrator
- MPI-parallel
 - \rightarrow High resolution
- Improved nuclear network
- Speed

Physics

- 3D source distributions
- Anisotropic diffusion

• tbd...

Example Simulation Results

Example results: Milkyway as spiral galaxy

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Axi-symmetric Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

NE-2001 Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Other Four Arm Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons

Two Arm Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$

Two Arm Model

icard

Ralf Kissmann

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow \, 1 \, \text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$

NE-2001 Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$

Other Four Arm Model

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$
 - Secondaries

Distribution of Carbon

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$
 - Secondaries

Distribution of Boron

Model setup

- Spiral arm source dist.
- Standard GALPROP parameters
- Electrons / protons \leftrightarrow Nuclear network

Results

- Different source distributions
- $ightarrow 1\,\text{TeV}$ electrons
 - Differences \leftrightarrow normalisation
 - $\leftrightarrow \ \text{Vicinity of Earth}$
 - Secondaries

Ralf Kissmanı

Picard

Applications

CRISM 2014

Gamma Rays with PICARD

Gamma Ray Data • 100 MeV • 100 GeV

Picard

Ralf Kissman

Ralf Kissmanı

Picard

Applications

CRISM 2014

Ralf Kissmanı

Preliminary Conclusion

- Increase of IC component
- Two-arm model excluded?

Gamma Ray Data • 100 MeV

• 100 GeV

Picard

- Increase of IC component
- Two-arm model excluded?
- Axi-symmetric model?

- Gamma Ray Dat • 100 MeV
 - 100 GeV

Picard

Conclusion

Galactic Propagation

- New generation of models
- Different improvements under way

Conclusion

Conclusion

Application of PICARD

- Principal CR data ✓
- GeV photons (\checkmark)
- TeV photons
- Electrons / DM

Galactic Propagation

- New generation of models
- Different improvements under way

Conclusion