Evidence of the passage of a SNR shock

Gaëlle Dumas IRAM S. Vaupré, C. Ceccarelli, P. Hily-Blant, G. Dubus, T. Montmerle, S. Gabici

- 1. Introduction: cosmic-rays/ISM interaction
- 2. The W51C Complex

3. IRAM 30m and PdBI observations

4. Conclusions

- In dense clumps:
 - UV and X-ray photons cannot penetrate
 - CRs are the major drivers of chemistry

- In dense clumps:
 - UV and X-ray photons cannot penetrate
 - CRs are the major drivers of chemistry
- ionization of atomic and molecular hydrogen
 - Production of H_3^+
 - ion/neutral chemistry

- In dense clumps:
 - UV and X-ray photons cannot penetrate
 - CRs are the major drivers of chemistry
- Ionization
- Drive the physical parameters: T and P

- In dense clumps:
 - UV and X-ray photons cannot penetrate
 - CRs are the major drivers of chemistry
- Ionization
- physical parameters: T and P
- Destruction of **dust** particles

The W51 complex

The W51 complex

MAGIC 300-1000 GeV (Aleksic et al. 12) ROSAT 0.7-2.5 keV (Koo et al. 02) W51B 13CO(1-0) 14°40'00" 0. 00 00 00 14°20'00'' 10pc ě Fermi/LAT 14°00'00" 19^h24^m00^{*} 22^m00^e 19^h24^m00^s 22^m00^{*} RA 2000.0 RA 2000.0

- W51A &W51B molecular clouds; W51C SNR
- SNR in interaction with W51B (Koo et al. 97, Green et al. 97)
- γ-ray emission (*Fermi*/LAT; MAGIC)

Measurement of CR ionization rate ζ :

- Abundance of $H_3^{+:}$
- Direct measurement in diffuse cloud
- In dense cloud: observations of DCO+/HCO+ ratio (Guelin et al 97)

Ceccarelli et al. 2011 ApJL 740

- IRAM 30m observations
- 5 positions in the interaction¹⁴
 region of W51C and W51B
- Abundance ratios:

DCO⁺ /HCO⁺ in all 5 regions

Ceccarelli et al. 2011 ApJL 740

- IRAM 30m observations
- 5 positions in the interaction¹/₁
 region of W51C and W51B
- Abundance ratios:

DCO⁺ /HCO⁺ in all 5 regions

• <u>W51C-E</u>

 $-\zeta = 10^{-15} \text{ s}^{-1} = 100 \text{ times larger than standard value}$

- Presence of freshly accelerated CR

- Ceccarelli et al. 11
 - IRAM 30m observations
 - high ionization rate in the W51C-E region due to CR

- Cyganowski et al. 11
 - IR and cm observations
 - Discovery of a protostar in close vicinity of W51C-E

PdBI Observations

- Compact emission in the 30m beam?
- Structure of the molecular gas?
- 144GHz: DCO+, 4"x3"
- 87GHz: H¹³CO⁺, 7"x4"
- rms ≈ 5mJy/beam

Continuum

•Continuum emission at

2mm: 144.1GHz and 3mm: 86.8GHz

2mm

3mm

DCO⁺ and H¹³CO⁺

- •No contamination from the protostar
- •W51C-E has an enhanced CR ionization flux

 DCO^+

H¹³CO⁺

SiO(2-1) emission

Dumas et al. 2014 ApJL

SiO(2-1) – Channel maps

SiO(2-1) emission

Dumas et al. 2014 ApJL Interpretation of the SiO emission

- Region of shock
- No outflow from the protostar
- Link with the SNR primary shock

Take home messages

- CR Ionization of dense gas
- Shocked regions caused by the passage of the SNR shock
- •W51C-E is downstream of the SNR primary shock

What's next?

- Spatial variations of the ionization
- Properties of the reverse shock
- CR acceleration sites