GeV constraints of young SNRs: the case of SN 1006 and HESS J7131-347

Particle acceleration in the stellar graveyard

SNR, PWN, Pulsar, Recycled Pulsar

Acceleration at:

Front shock	Relativistic shock	Polar cap, slot gap ?	Polar cap, slot gap ?
Powered by:			
Explosion Energy	PSR rotation	Electric field generated	Momentum transfer
Acceleration lasts ¹ :		by PSR Iolalion	
few kyrs	few 10 kyrs	few 100 kyrs	~ Myrs
Acceleration lasts ¹ : few kyrs few 10 kyrs		by PSR rotation	(accretion)

(1): Acceleration of high energy particles (~GeV-TeV)

After Death Timescale 2

Key Science questions

Shell-morphology

young SNRs: few kyrs

Vela Jr, RX J1713-3946, RCW 86, SN 1006, HESS J1731

Interacting with molecular clouds

older SNRs: t~10 kyrs

IC 443, W28, W51, etc

SNRs at TeV energies

Shell-morphology

young SNRs: few kyrs

Vela Jr, RX J1713-3946, RCW 86, SN 1006, HESS J1731

by on the second the s

Interacting with molecular clouds

older SNRs: t~10 kyrs

IC 443, W28, W51, etc

RX J1713-3946 : hadronic or leptonic ?

Red --- (Berezhko 2010) : n_H=0.25 cm⁻³ Blue --- (Ellison, 2010) : n_H=0.05 cm⁻³

γ-ray emission is dominantly from leptonic processes* Does NOT exclude existence of protons

*: a hard spectrum could also be obtained from hadrons-clumps interaction (e.g. Inoue+12, Gabici+14)

The TeV-shell SNRs club

RX J1713	VelaJr	HESS J1731	SN 1006	RCW 86		
		H.E.S.S.	HESS EXCERSIMAP			
Core collapse SN		Type la				
Density						
<0.02 cm ⁻³	<0.03 cm ⁻³	<0.02 cm ⁻³	<0.05 cm ⁻³	0.01 - 1 cm ⁻³		
Age						
1.6 kyrs	2-4 kyrs	2-4 kyrs (?)	1.006 kyrs	1.8 kyrs		
Radius						
10 pc	12 pc	14 pc	10 pc	15 pc		
GeV spectral index						
1.5 ± 0.1	1.85 ± 0.06	?	?	< 1.8 7		

Fermi analysis of HESS J1731

• Analysis on 7°x7° ROI for E > 1 GeV with 5 yrs of P7REP data

- No significant source on SNR
- Using the HESS spatial template upper limits are derived (99.7% CL)

^{*:} Sigma ~ sqrt(TS) 5 sigma ~ 25 TS

Fermi analysis of SN 1006

• Analysis on 7°x7° ROI for E > 1 GeV with 5 yrs of P7REP data

- No significant source on SNR
- Using the HESS spatial template upper limits are derived (99.7% CL)

GeV-TeV spectral analysis

Simple hadronic model rejected

Similar to RX J1713

Electron radiation dominates GeV-TeV regime

Leptonic dominated model comparison

Leptonic dominated model comparison

W44 at GeV

Evidence of accelerated protons in SNRs!

GeV index-Luminosity

1st Fermi SNR catalog Brandt, Hewitt, DePalma, Giordano, Acero and more

Scatter on two orders of magnitude in L γ Young SNRs have low L γ , hard index Evolving in low ambient densities ?

Interacting SNRs have higher Lγ, soft index Encountering higher densities

Emerging picture (simple)

Time evolution of gamma-ray emission from SNRs

(no X/y leptonic emission)

20 0

-20

Simple SED time evolution

Leptonic + hadronic from clumps *Hadronic slope could be harder* Hadronic from shock-cloud Spectral break at TeV (low Vshock) No high energy electrons

Conclusion

- Emerging global picture for SNRs for the HE emission:
- Time evolving dominant mechanism
- SNRs are led by their environment
- Composition: e⁻ shining (young SNRs), protons (evolved SNRs)
 Flux: population study will tell
 Emax: E_{max}(p) measured only with old SNRs

Main issues:

High density -> V_{shock} decreases -> E_{max} decreases CR(Emax) escape the SNR quickly

Side note - densities in SN 1006

- Low average density of ~ 0.05 cm⁻³
 - Known shock-cloud interaction in the NW (density ~1 cm⁻³)
 - But acceleration is only efficient in bright limbs (B field effect)

Discovery of interaction in the SW

- Cloud at same VLSR as NW cloud
- HI reproduce perfectly X-ray N_H
- Gas is in front of line sight

Discovery of interaction in the SW

Shock has decellerated due to interaction

Azimuthal angle

1980 - 2010 : disentangling components

• In 1980's : SN 1006 is thermal or synchrotron ?

Spatially resolved spectroscopy with CTA

• SNRs are a mix of hadronic and leptonic emission

