SNR and molecular cloud associations as seen by H.E.S.S.

Cyril Trichard,

on behalf of the H.E.S.S. Collaboration
H.E.S.S. experiment

- Most sensitive Cherenkov Telescopes
 - \(\sim 100 \text{ GeV} - 100 \text{ TeV} \)

- Performant strategy for CR acceleration site study:
 - Large Galactic observations
 - High number of detected sources (>80)
 - Angular resolution <0.1 deg
 => Very successful

- New phase HESS II since 2012
 - Lower threshold
SNR seen by H.E.S.S.

- SNRs are best candidates for Galactic cosmic rays accelerators
- VHE Gamma-rays detected from several SNR shells
 - Particles confined at shock
 - Evidence of >100 TeV accelerated particles
- What’s γ-rays origin?

\[e^- + \gamma_{CMB} \rightarrow \gamma_{TeV} \]

\[RC + p \rightarrow \pi^0 + \ldots \rightarrow \gamma_{TeV} \]
SNR seen by H.E.S.S.

- SNRs are best candidates for Galactic cosmic rays accelerators
- VHE Gamma-rays detected from several SNR shells
 - Particles confined at shock
 - Evidence of >100 TeV accelerated particles
- MWL measurements from RXJ1713 favor a leptonic origin
 - What about hadron acceleration?
 - Not enough dense ISM to detect them?

\[e^{-} + \gamma_{CMB} \rightarrow \gamma_{TeV} \]

\[RC + p \rightarrow \pi^{0} + \ldots \rightarrow \gamma_{TeV} \]
SNR/MC interest

- SNR shock propagating in dense medium:
 - Gamma-ray emission from hadronic collisions enhanced
 - Illuminated cloud away from the SNR may probe the highest CR energies

\[RC + p \rightarrow \pi^0 + \ldots \rightarrow \gamma_{TeV} \]

- Massive stars originate inside massive dense coulds
 - Short life time => SNe close to the progenitor clouds
 - Frequent associations expected

- Large fraction of SNR show evidence of interaction such as
 - OH masers (1720 MHz)
 - Shocked molecular lines
 - Dust lines (SiO) heated by shock

Wardle, 2002

Require dense ISM
SNR/MC interest

W44

Ackermann et al. (2013)
Pending questions:

- Break between GeV/TeV (also for IC443) : systematic ?
- Are SNRs PEV accelerator?

TeV observations required
W 28

- D \sim 2-3 \text{kpc}
- Age \sim 35 - 150 \text{ kyr}
- CO coincident with TeV emission
- Two MC complexes North/South
- North cloud is shocked by W28 OH masers
- Brighest GeV emission from north cloud
Visible effect of accelerated particle diffusion away from the shock
• $E_{\text{Break}} \sim 1 \text{ GeV}$
W 49B

- **D ~ 8 - 12 kpc**
- **Age ~ 1 - 4 kyr**
- Evidences of SNR / dense medium interaction
 - Shocked molecular lines
- **TeV emission at the position of the SNR**
- **GeV coincident with the H.E.S.S source**

Brun et al. 2010

Fermi position

NVSS radio contours

PRELIMINARY
W 49B

- D ~ 8 - 12 kpc
- Age ~ 1 - 4 kyr
- Evidences of SNR / dense medium interaction
 - Shocked molecular lines
 - TeV emission at the position of the SNR
 - GeV coincident with the H.E.S.S source

Brun et al. 2010

- NVSS radio contours
- Fermi position

- Nice GeV/TeV spatial and spectral matching
- \(E_{\text{Break}} \sim 5 \text{ GeV} \)

\(\Gamma = 2.18 \pm 0.04 \)
\(\Gamma = 2.9 \pm 0.2 \)
\(\Gamma = 3.1 \pm 0.3 \)
G 349.7+0.2

- D ~ 11 - 12 kpc
- Age ~ 1.8 kyr
- Radio emission from the shell
- MC (~10^4 M☉) beyond the SNR
- Strong evidences of SNR/MC interaction
 - OH masers toward molecular clouds
 - Shocked molecular lines

VLA image

CO (2-1) contours v ~ 15 km/s
+ : OH Masers

Dubner et al. 2004

Tian & Leahy 2014
G 349.7+0.2

- Very nice correlation X-rays / Radio
- Two thermal X-rays component
 - Ejecta
 - Shocked gas
- No evidence of PWN
- No nonthermal X-rays detected
G 349.7+0.2

- Region covered by the Galactic plane survey + dedicated observations

- Close to:
 - RX J1713.7-3946
 - CTB37 A&B

- Point like TeV excess at the SNR position
G 349.7+0.2

- Reprocessed GeV data
- > 5 yr data analysed (with new IRFs)
- Very nice spatial agreement HESS/Fermi
G 349.7+0.2

- No significant spectral break in Fermi data
- $E_{\text{Break}} > 10$ GeV (under study)
SNR/MC candidates

- **W51, W41 & CTB37 A:**
 - Other scenario possible

- **Puppis A:**
 - GeV emission but no TeV detection

- **Dubner et al. 2013**
 - X-rays

- **Fiasson et al. 2009**
 - CRISM 2014

- **Aharonian et al. 2008**
 - CTB 37A
 - H.E.S.S.
 - HESS Collab 2014 sub.
SNRs in dense medium

- HESS J1640-465
- HESS J1641-463
 - No tracer of physical interaction
 - Other scenario possible

- Kes 78, W30 :
 - Possible PWN emission

- ...

Oya et al. 2012
Aharonian et al. 2005

HESS Collab 2014
HESS J1640-465
CRISM 2014 C. Trichard 24.06.2014 Montpellier
Common properties

<table>
<thead>
<tr>
<th>Source</th>
<th>Age (kyr)</th>
<th>Distance (kpc)</th>
<th>E_{Break} (GeV)</th>
<th>$\Gamma_{E<\text{Break}}$</th>
<th>$\Gamma_{E>\text{Break}}$</th>
<th>Γ_{TeV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 28N</td>
<td>~ 35 - 150</td>
<td>~ 2 - 3</td>
<td>1\pm0.2</td>
<td>2.09\pm0.08</td>
<td>2.74\pm0.06</td>
<td>2.66\pm0.27</td>
</tr>
<tr>
<td>W 49B</td>
<td>~ 1 - 4</td>
<td>~ 8 - 12</td>
<td>4.8\pm1.6</td>
<td>2.18\pm0.04</td>
<td>2.9\pm0.2</td>
<td>3.1\pm0.3</td>
</tr>
<tr>
<td>G349.7+0.2</td>
<td>~ 2</td>
<td>~ 11 - 12</td>
<td>>10 (?)</td>
<td>2.19\pm0.04</td>
<td></td>
<td>2.8\pm0.3</td>
</tr>
<tr>
<td>CTB 37A</td>
<td>-</td>
<td>~ 6 - 10</td>
<td>-</td>
<td>LogParabola</td>
<td></td>
<td>2.3\pm0.13</td>
</tr>
<tr>
<td>W 51</td>
<td>~ 30</td>
<td>~ 6</td>
<td>-</td>
<td>LogParabola</td>
<td></td>
<td>detected</td>
</tr>
<tr>
<td>Puppis A</td>
<td>~ 4 - 8</td>
<td>~ 2</td>
<td>?</td>
<td>2.6\pm0.13</td>
<td></td>
<td>U.L.</td>
</tr>
<tr>
<td>W 41</td>
<td>~ 60 - 200</td>
<td>~ 4</td>
<td>?</td>
<td>2.15\pm0.12</td>
<td></td>
<td>2.64\pm0.13</td>
</tr>
<tr>
<td>W44</td>
<td>~ 10</td>
<td>~ 3</td>
<td>~ 2</td>
<td>2.36\pm0.05</td>
<td>3.5\pm0.3</td>
<td>-</td>
</tr>
<tr>
<td>IC 443</td>
<td>~ 10</td>
<td>~ 1 - 2</td>
<td>~ 20</td>
<td>2.36\pm0.02</td>
<td>3.1\pm0.1</td>
<td>3.1\pm0.3</td>
</tr>
</tbody>
</table>
What do we learn?

- TeV emission seemed related with SNR/Cloud interaction not from the shell

- Common features:
 - Spectral break GeV/TeV PowerLaw
 - Bright + "flat" GeV spectra
 Faint + soft TeV spectra
 - Hadronic origin of the γ-rays favored
 - $W_p < \sim 10 \% E_{SNR}$
 - No detection of VHE cutoff

- Evolution with age?
 - E_{break}
 Strongly depend on environmental conditions
 - Γ_{TeV}
 Need bigger set of sources
• Fifth big telescope (2012):
 - Lower threshold: ~30 GeV

• Which interests for SNR/MC studies?
 - Overlap with Fermi
 - SNR/MC exhibit soft faint spectrum
 - More constraints on E_{Break}
Summary

- Number of SNR/MC detected at GeV and TeV increase steadily (new G349.7+0.2) + Large number of candidates

- Common spectral features appeared:
 - Spectral break GeV / TeV
 TeV observations needed
 - No signature of VHE cutoff

- Interesting objects for the whole CR community
 Acceleration/Diffusion/Propagation
 Cloud ionisation / ISM Chemistry
Thank you
W28 clouds

NANTEN 12CO(J=1-0) image of the W28 region

NANTEN 12CO(J=1-0) image of the W28 region
W 51

H.E.S.S.

\[\text{13CO contours} \]

\[\text{OH masers} \]

\[\text{H.E.S.S. sig. contours} \]

\[\text{SNR G49.2-0.7} \]

\[\text{CXO J192318.5+140305} \]

\[\text{Preliminary} \]

\[\text{Right ascension} \]

\[\text{Declination} \]

\[\text{CRISM 2014} \quad \text{C. Trichard} \quad 24.06.2014 \quad \text{Montpellier} \]
Unexpected lack of TeV emission from this young SNR