

SNR and molecular cloud associations as seen by H.E.S.S.

Cyril Trichard, on behalf of the H.E.S.S. Collaboration

H.E.S.S. experiment

- Most sensitive Cherenkov Telescopes ~100 GeV – 100 TeV
- Performant strategy for CR acceleration site study :
 - Large Galactic observations
 - High number of detected sources (>80)
 - Angular resolution <0.1 deg => Very sucessful
- New phase HESS II since 2012
 - Lower threshold

CRISM 2014

C. Trichard

SNR seen by H.E.S.S.

- SNRs are best candidates for Galactic cosmic rays accelerators
- VHE Gamma-rays detected from several SNR shells
 - Particles confined at shock
 - Evidence of >100 TeV accelerated particles

• What's γ-rays origin ?

SNR/MC interest

- SNR shock propagating in dense medium :
 - Gamma-ray emission from hadronic collisions enhanced
 - Illuminated cloud away from the SNR may probe the highest CR energies

Require dense ISM

 $\overline{RC+p} \to \pi^0 + \ldots \to \gamma_{TeV}$

Supernova remnant shock Massive stars originate inside massive dense coulds OH - Short life time => SNe close to the progenitor clouds maser - Frequent associations expected Molecular cloud Large fraction of SNR show evidence of interaction such as Shocked cloud - OH masers (1720 MHz) material - Shocked molecular lines - Dust lines (SiO) heated by shock Wardle, 2002 **CRISM 2014** C. Trichard 24.06.2014 Montpellier

SNR/MC interest

6

SNR/MC interest

- Break between GeV/TeV (also for IC443) : systematic ?
- Are SNRs PEV accelerator?

TeV observations required

CRISM 2014

C. Trichard

D ~ 2-3 kpc
Age ~ 35 - 150 kyr

- CO coincident with TeV emission
- Two MC complexes North/South
 - North cloud is shocked by W28
 OH masers

24.06.2014

Montpellier

W 49B

W 49B

- **Region covered by the Galactic plane** survey + dedicated observations
- **Close to :**
 - RX J1713.7-3946
 - CTB37 A&B

-347 -345 -385 -385 -381 -397 11729 11718 11714 -3785 -381 -397 HES HES HES HES HES HES

HEC

16

18

SNR/MC candidates

-38°21

SNRs in dense medium

- HESS J1640-465
- HESS J1641-463
 - No tracer of physical interaction

C. Trichard

Declination

- Other scenario possible
- Kes 78, W30 :
 - Possible PWN emission

CRISM 2014

Common properties

		ary result	ts		Fermi-LAT		H.E.S.S.	
	v prelimin	Age (kyr)	Distance (kpc)	E _{Break} (GeV)	Γ _{E<break< sub=""></break<>}	Γ _{E>Break}	Γ _{TeV}	
Man	W 28N	~ 35 - 150	~ 2 - 3	1±0.2	2.09±0.08	2.74±0.06	2.66±0.27	
	W 49B	~ 1 - 4	~ 8 - 12	4.8±1.6	2.18±0.04	2.9±0.2	3.1±0.3	
	G349.7+0.2	~ 2	~ 11 - 12	>10 (?)	2.19±0.04		2.8±0.3	
	CTB 37A	-	~ 6 -10	-	LogParabola		2.3±0.13	
	W 51	~ 30	- 30 ~ 6 - LogParabola		arabola	detected		
	Puppis A	~ 4 - 8	~ 2	?	2.6:	±0.13	U.L.	
	W 41	~ 60 -200	~ 4	?	2.15±0.12		2.64±0.13	
	W44	~ 10	~ 3	~ 2	2.36±0.05	3.5±0.3	-	
	IC 443	~ 10	~ 1 - 2	~ 20	2.36±0.02	3.1±0.1	▼ 3.1±0.3	
		5 Jan William			MAGIC			
		CRISM 2014 C. Trichard				24.06.2014 Montpellier H.E.S.S. 2		

What do we learn ?

- TeV emission seemed related with SNR/Cloud interaction not from the shell
- Common features:
 - Spectral break GeV/TeV PowerLaw
 - Bright + "flat" GeV spectra Faint + soft TeV spectra
 - Hadronic origin of the γ -rays favored - $W_p < \sim 10 \% E_{SNR}$
 - No detection of VHE cutoff

- Evolution with age ?
 - E_{break}
 - Γ_{TeV}

Strongly depend on environmental conditions Need bigger set of sources

C. Trichard

HESS II

- Fifth big telescope (2012) :
 - Lower threshold : ~ 30 GeV

- Which interests for SNR/MC studies ?
 - Overlap with Fermi
 - SNR/MC exhibit soft faint spectrum

CRISM 2014

- More constraints on E Break

Summary

- Number of SNR/MC detected at GeV and TeV increase steadily (new G349.7+0.2)
 + Large number of candidates
- Common spectral features appeared :
 - Spectral break GeV / TeV
 TeV observations needed
 - No signature of VHE cutoff

 Interesting objects for the whole CR community Acceletation/Diffusion/Propagation Cloud ionisation / ISM Chemistry

CRISM 2014

C. Trichard

Thank you

CRISM 2014

C. Trichard

W28 clouds

NANTEN ¹²CO(J= 1-0) image of theW28 region

CRISM 2014

C. Trichard

Puppis A

Unexpected lack of TeV emission from this young SNR

CRISM 2014

C. Trichard