A database of charged cosmic rays (CRDB) + Interstellar flux (IS) and modulation level using neutron monitors (NM) data

I. CRDB: presentation and toolsII. IS flux, Solar modulation, and NM

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr *CRISM - Montpellier* 24/06/2014

I. CRDB: presentation and tools

II. IS flux, Solar modulation, and NM

Based on

A database of charged cosmic rays http://arxiv.org/abs/1302.5525 DM, F. Melot, R. Taillet

CRDB (Cosmic Ray Data Base)

What?

Where?

- Compilation of CR data: e^- , e^+ , p-bar, and Z \leq 30, for energies below the knee
- On-line tools: data selection, data export, plots (experimental set-up, data...), etc.
- Collaborative tool: submission interface to archive past and future CR data
- Website: https://lpsc.in2p3.fr/crdb
- Contact: crdatabase@lpsc.in2p3.fr
 - Publication: http://arxiv.org/abs/1302.5525
 - Galactic CR studies: acceleration, propagation, interstellar (IS) fluxes
 - Dark matter indirect detection: positrons, antiprotons
 - Solar studies: Solar modulation, ground level measurements
 - Experimentalists: quick access to previous experimental set-ups, data, etc.
 - V1.0 (Feb. 2013): first release
 - V1.2 (Oct. 2013): export to GALPROP, enable combinations of data in query...
 - V1.3 (Feb. 2014): REST interface, re-plot (more plot options)...
 - V2.1 (this morning): major change for solar modulation values implementation

Why?

Versions

CRDB: behind the scene (1)

Application developer Frédéric Melot (LPSC)

- Hosted by LPSC website
- https protocol (administrators access protected areas)
- Web pages in PHP (Hypertext PreProcessor)
- Structure in AJAX (Asynchronous JavaScript and XML)
- Third-party libraries: jquery, Jquery-ui, jquery.cluetip, table-sorter

LAMP solution: free open source softwares

- Linux operating system
- Apache HTTP server
- MySQL database software
- **P**HP

CRDB: behind the scene (2)

MySQL structure

CRDB: behind the scene (2)

MySQL structure

Application developer Frédéric Melot (LPSC)

- Hosted by LPSC website
- https protocol (administrators access protected areas)
- Web pages in PHP (Hypertext PreProcessor)
- Structure in AJAX (Asynchronous JavaScript and XML)
- Third-party libraries: jquery, Jquery-ui, jquery.cluetip, table-sorter

LAMP solution: free open source softwares

- Linux operating system
- Apache HTTP server
- MySQL database software

- **P**HP

CRDB: useful definitions

CRDB: data description and units

MySQL structure

not given, $\langle E \rangle = \sqrt{(E_{min} E_{max})}$

<u>Bin range</u>: same unit as <E> (if not $\overline{given}, \overline{E}_{min} = E_{max} = \langle E \rangle$)

<u>Value</u>: measured quantity in unit of

- [(< E > m 2 s sr) -1] forfluxes:
- unitless if ratio.

Stat Err: statistical errors (same unit as Value).

Syst Err: systematic errors (same unit as Value), set to 0 if not provided

CRDB: Solar modulation parameters

MySQL structure

1. **From publication:** solar modulation values taken from publications

- not homogeneous set (relies on ≠ IS fluxes, models, data;
- underlying hypotheses not always provided;
- only small fraction of publications provide it!

2. **NM [Uso11]**: based on NM data analysis of Usoskin *et al.* (2011)

- homogeneous set (same modelling for all, Force-Field);
- limited to 07/1936 12/2009;
- monthly averaged.

CRDB snapshots: main page (1)

http://lpsc.in2p3.fr/crdb

This database is a compilation of experimental cosmic-ray data. The database includes electrons, positrons, antiprotons, and nuclides up to Z=30 for energies below the knee. If you spot any errors or omissions, want to contribute, or simply comment on the content of the database, please contact us. We are eager to extend the database to Z>30 and to higher energy ground measurements and any help is welcome.

Warning: several sets of Solar modulation values are provided per sub-experiment. We refer the user to the discussion in Sect.2.3 of Maurin et al. (2013) for a complete discussion, and only give below a brief description of the different sets of modulation parameters available in the CRDB: [read more] Current version / Latest data added / Acknowledgements

Structure of the database

This is a mySQL database containing lists of experiments (name, dates of flight, experimental technique in brief, website), the corresponding publications (ref. and link to the ADS database), and all available data points (fluxes and ratios of leptons, nuclides, and anti-protons including their statistical and systematic error whenever available).

-Accessing the database

- Experiments/Data: list of experiments, publications, data
- Data extraction: selection by flux/ratio/energy range... (on this web site or via a REST interface)
- Export database content in USINE or GALPROP compliant format (ASCII files)
- · Get all bibtex entries and Latex cite (by sub-experiment)

Acknowledgements: this project has been financially supported by the PNHE

CRDB snapshots: main page (2)

Acknowledgements: this project has been financially supported by the PNHE

CRDB snapshots: 'Experiment/Data' tab (1)


```
[data] [Bleeker et al., ICRC 1, 327 (1965)] e +e +
```

CRDB snapshots: 'Experiment/Data' tab (2)


```
[data] [Bleeker et al., ICRC 1, 327 (1965)] e^++e^+
```

CRDB snapshots: 'Experiment/Data' tab (3)

[data] [Fanselow et al., ApJ 158, 771 (1969)] $e^{+}/(e^{+}+e^{+})$, e^{+} , $e^{-}+e^{+}$ replaces [data] [Hartman, ApJ 150, 371 (1967)] $e^{+}/(e^{-}+e^{+})$ [data] [Fanselow, ApJ 152, 783 (1968)] e^{-}

Balloon (1965,1966,1967,1968)

ullet Balloon (1965/07) - 1 flight de Bilt (Netherlands) $^{ ext{Q}}$

```
[data] [Bleeker et al., ICRC 1, 327 (1965)] e +e
```

CRDB snapshots: 'Experiment/Data' tab (4)

CRDB snapshots: 'Experiment/Data' tab (5)

Welcome	xperiment: IMP						×			
	Sub-experiment: IMP8 (1	L974/01-197	8/10)							
[sort by name] [Description: Sapphi	re Cerenkov	radiator, plastic so	cintillator, Li-d	rifted Si d	etectors $^{ extsf{Q}}$		297 entries		
	Date(s): 1974/01/01-	<= 00:00:00	1978/10/01-00:00	:00						
	Flight: 4 years data 7	Flight: 4 years data 74-78								
• IMP8 (19	Distance: 1 AU									
[data]	Solar modulation: P	arameters					→ All data	/info for this		
	Ref (ADS url): Garci	a-Munoz et a	l., ApJS 64, 269 (1987)			sub-e	xperiment		
	Data E axis: EKN (ki	netic energy	per nucleon)					7//////////////////////////////////////		
[data]	Quantities: Li/C, Be/	C, Be/B, Sc/l	Fe, V/Fe, B/C, N/C)				0////8/3		
Balloon (1964,:	Export data content i	n USINE or (GALPROP complia	ant format (AS	CII files)		J.			
Balloon	a & units									
[data]		~ 5 >	Din rongo	Value	Ctot Env	Curet Eur		///////////////////////////////////////		
Balloon	Ratio	<⊑> [GeV/n]	Bin range	value [-]	Stat Erra	Systerr		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
[data]	Sc/Fe	0.227	[0.087,0.366]	4.800000e-2	±0.009	-				
[uuu]	[Top]									
Balloon	V/Fe	0.235	[0.09,0.38]	9.400000e-2	±0.01	-		///////////////////////////////////////		
[data]	[Top]									
	N/O	0.0341	[0.025,0.043]	2.800000e-1	±0.04	-		(((()))))		
Balloon (1965+	N/O	0.0602	[0.049,0.0714]	2.600000e-1	±0.02	-				
Balloon	N/O	0.0827	[0.0714,0.094]	2.400000e-1	±0.02	-		///////////////////////////////////////		
[data]	N/O	0.1052	[0.094,0.1164]	2.400000e-1	±0.02	-		-++++)		
[data]	N/O	0.1279	[0.1164,0.1393]	2.400000e-1	±0.02	-				
[uata]	N/O	0.1506	[0.1393,0.1618]	2.700000e-1	±0.02	-		(((()))))		
Balloon (1965	N/O	0.173	[0.1618,0.1842]	2.700000e-1	±0.02	-				
	[Top]	0.072	[0 0 20 0 11 4]	1 200000- 1	+0.01					
Balloon	1.171.1	0.072	11179111121		+0.01	-				
[data]										

CRDB snapshots: 'Experiment/Data' tab (6)

Welcome	xperiment: IMP							
[sort by name] [Sub-experiment: IMP8 (1974/01-1978/10) Description: Sapphire Cerenkov radiator, plastic scintillator, Li-drifted Si detectors Date(s): 1974/01/01-00:00:00 => 1978/10/01-00:00:00							
 IMP8 (19 [data] IMP8 (19 [data] 	Flight: 4 years data 74-78 Distance: 1 AU Solar modulation: Parameters Ref (ADS url): Garcia-Munoz et an ApJS 64, 269 (1987) Data E axis: EKN (kinetic energy per nucleon) Quantities: Li/C, Be/C, Be/B, Sc/Fe, V/Fe, B/C, N/O							
Solar modulation v	alues for sub-experiment IMP8 (1974/01-197	8/10) 2 sets of values ×						
	From publication	NM [Uso11]						
Modulation Mode	Spherically Symmetry Fisk & Axford (1969), Fisk (1971), Beatty et al. (1993) → Solar wind and diffusion parameters absorbed in free parameter Φ (small phi)	Force-Field Gleeson and Axford (1967, 1968), Perko (1987), Caballero-Lopez & Moraal (2004) → Free parameter is Φ (small phi)						
Value [MV]	(490)	$\frac{471\pm26}{71\pm26}$ ~ similar for this sub-experiment						
ADS Reference	Garcia-Munoz et al., ApJS 64, 269 (1987)	Usoskin et al. (2011) (more an exception than the rule)						
Comment	Almost each publication proceeds differently	Available for the period [07/1936-12/2009]						
IS flux	Leaky-Box calculation → IS flux calculated from Leaky-Box Model	LIS flux hypothesis → Generally a power law in rigidity						
Data	CR data from the publication	Neutron Monitor data						
Implementation in CRDB	n in Hard-coded: must be entered for each new sub-exp dates): interpolates/averages the modulation between flight dates based on Tab.3 of Usoskin et al. (2011)							

Close

Hypotheses

CRDB snapshots: 'Data extraction' tab (1)

Extract selection

CRDB snapshots: 'Data extraction' tab (2)

Extract selection

\rightarrow and click on "Extract selection" to get...

CRDB snapshots: 'Data extraction' tab (3a)

CRDB snapshots: 'Data extraction' tab (3b)

CRDB: 'Data extraction' tab (4)

Welcome	Ex	C element flux (Energy type: EKN, Solar modulation: NM [Uso11])							× //		
///////	111	Balloon (1	əərinə) 4	MV	BUCKIE	y et al., ApJ 4/	29,730 (1994)				
		CREAM-II	(2005/12-2006/01) Q [WEB] 9	φ=53	30 ± 26 MV Ahn et	al., ApJ 707, §	593 (2009)				REST interface
	Flu	CRN-Spac	elab2 (1985/07-1985/08) 9 4	φ=54	14 ± 26 MV Muller	et al., ApJ 374	. 356 (1991)				
			0 (1070/10 1000/06) Q	,						ve da	ita
		IWEB1	2 (1979/10-1980/06)	4 φ=74	12 ± 26 MV Engelm	ann et al., A&	A 233, 96 (19	90)			
		TRACERO	6 (2006/07) 🤍 [WEB] 6	φ=44	13 ± 26 MV Obermo	eier et al., ApJ	724, 14 (2011	.)		18	
		-Result S	Summary							10	
		115 results	found								
	Re	9 addition	nal values from combinations of t	wo native	data (same sub-exp	eriment and e	nergy within 5	% of each ot	her)	-	
		-Results	Data								
									Reduced view		
						Value	Stat Err	Syst err			
			Sub-experiment 🗸	<e></e>	Bin range	[# (GeV/n	[# (GeV/n m ²	[# (GeV/n	φ		
				[GeV/n]	[GeV/n]	m ² s sr) ⁻¹]	s sr) ⁻¹]	m ² s sr) ⁻¹]	[WV]		
		(ACE-CRIS (1997/08 1998/04)	7.200e-2	-	5.310000e+0	±1.580e-1	-	425	2	
			ACE-CRIS (1997/08 1998/04)	8.500e-2	-	5.849000e+0	±1.750e-1	-	425	1	
			ACE-CRIS (1997/08 1998/04)	1.000e-1	-	6.447000e+0	±1.930e-1	-	425		
	6		ACE-CRIS (1997/08 1998/04)	1.200e-1	-	7.167000e+0	±2.250e-1		425		
All data	tou	nd	ACE-CRIS (1997/08 1998/04)	1.420e-1	-	7.604000e+0	±2.530e-1	-	425	2	
			ACE-CRIS (1997/08 1998/04)	1.700e-1	-	7.968000e+0	±2.960e-1	-	425		
			ACE-CRIS (1997/08 1998/04)	2.000e-1	-	7.934000e+0	±3.290e-1	-	425		
			ACE-CRIS (1998/01 1999/01)	6.596e-2	[6.399e-2.6.799e-2]	4.060086e+0	±6.710e-1	-	508		

CRDB: 'New data' tab (1)

	Welcome	Experiments/Data	eriments/Data Data extraction Links				
your help	ative tool	Adding new d 1. Tell us wh 2. Fill and su related int 3. The data internal va most). *The email is used for the website). The nam acknowledge your con	lata to the CR databa no you are *; ubmit data (and instru fos); become available afte alidation (a few days l contact purpose only (it will not a e, address, and institute are use tribution in the 'Welcome' webpa	ase ment- er ater at appear on d to ge.			
		Step 1: conta	ct details				
		First name:	sponge				

CRDB: 'New data' tab (2)

	V	Velcome	Experiments/Data	Data extraction	Links	New data						
	Dear sponge bob (spongebob@crazy.com from Deep orange), you can now proceed with the data. You need to fill in the following fields (in order): (1) experiment, (2) sub-experiment (corresponding to a sub-detector of the main experiment, or to the same experiment analysed at a different period), (3) publication, and then (4) data.											
	(-1) Experin	ent									
Lot of		AMS02	or select among				~					
stuff to /												
fill (new 🔨		-2) Sub-exp	periment									
screens), \		Insert nev	v or select among AM	1802 (2011/06-2012/1	2) - 18 mon	ths data 2011-	2012 ~					
If new!	$\left \right\rangle$)				
		-3) Publica	tion									
		Insert nev	v, select among Agui	lar et al., PRL 110, 110	02 (2013) ~	2						
		or link to ar	nother publication amon	g				▼ 🤨				
	(4) Data										
		For the sel	ected publication, the da	ata enabled for upload	are the foll	owing: POSITI	RON/ELECTRON+POSITR	NC				
		Lifergy axi	S. LINN (KINELIC energy	per nucleon) in Gev/n	•							
	\langle	Download	template data file 🦻		•							
		Upload dat	a file: Browse No	file selected.	<u>.</u>							
	\triangleleft	Graphica	l check before submissi	on								

\rightarrow appear online once validated (so far, by me!)

I. CRDB: presentation and toolsII. IS flux, Solar modulation, and NM

Based on

Neutron Monitors and muon detectors for solar modulation studies: interstellar flux, yield function, and assessment of critical parameters in count rate calculations

http://arxiv.org/abs/1403.1612 (to appear in AdSpR)

DM^a, A. Cheminet^{b,c}, L. Derome^a, A. Ghelfi^a, G. Hubert^{b,c}

^a LPSC, Grenoble ^b ONERA, Toulouse ^c IRSN, Saint-Paul-Lez-Durance

Key questions

IS fluxes

- footprint of CR synthesis/acceleration/transport
- Low energy pbar and dbar fluxes for DM detection
- ionisation level of the ISM
- molecules formation in molecular clouds
- X- and γ -ray emisions in molecular clouds

Key questions

IS fluxes

Solar modulation

- footprint of CR synthesis/acceleration/transport
- Low energy pbar and dbar fluxes for DM detection
- ionisation level of the ISM
- molecules formation in molecular clouds
- X- and γ-ray emisions in molecular clouds
- CR transport in the solar cavity (diffusion, convection, drift...?)
- Space weather, correlation with Sun activity proxies (sunspots, etc.)
- What is the modulation level for my experiment?How much variation on a given data taking period?

Experimentalists (e.g., AMS-02)

Key questions

IS fluxes

- footprint of CR synthesis/acceleration/transport
- Low energy pbar and dbar fluxes for DM detection
- ionisation level of the ISM
- molecules formation in molecular clouds
- X- and γ-ray emisions in molecular clouds
- CR transport in the solar cavity (diffusion, convection, drift...?)
- Space weather, correlation with Sun activity proxies (sunspots, etc.)
- What is the modulation level for my experiment?How much variation on a given data taking period?

Experimentalists (e.g., AMS-02)

Solar modulation

1. IS fluxes: what are they? 2. Modulation model: charge-dependence, anisotropic diffusion?

 \rightarrow Obtain homogeneous sets of modulation levels (+ time series), in the context of the force-field approximation: single free parameter $\phi(t)$

Force-Field approximation

Degeneracy between modulation level and IS flux

Degeneracy between modulation level and IS flux

Figure 3: Value of the modulation shift $\Delta \phi_i$ to add to the reference modulation level ϕ_{ref} , for $J_i^{\text{TOA}}(\phi_{\text{ref}} + \Delta \phi_i)$ to be as close as possible to $J_{\text{ref}}^{\text{TOA}}(\phi_{\text{ref}})$. The index *i* runs on the IS flux parametrisations shown in Fig. 2 (see also App. A).

Degeneracy between modulation level and IS flux

 \rightarrow Use worldwide network of NMs to cross-check values

Alexandre Ghelfi

CR showers, ground-based detectors, and count rates

Error budget on count rates and modulation level

Ingredient	Effect	Paper	aper $\frac{\Delta N}{N}$			[MV]	Comment	
			NM	μ	NM	μ		
Solar modulation Cut-off rigidity	$ \phi \in [0.2, 1.5] \ GV \\ R_c \in [0, 10] \ GV $	Fig. 16 Fig. 11	[+15,-25]% [+10,-20]%	$^{[+5,-10]\%}_{[0,-5]\%}$	-	-	$ \begin{array}{ll} w.r.t. & \phi = 0.5 \ GV \\ w.r.t. & R_c = 5 \ GV \end{array} $	
TOA flux	p and He CR data IS flux dispersion¶ Heavy species	Fig. 12 Fig. 12 Fig.1	${\pm 2\%} {\pm 6\%} {\pm 0.6\%}$	${\pm 2\%} {\pm 8\%} {\pm 0.6\%}$	$\pm 66 \\ \pm 200 \\ \pm 20$		(t, R_c, ϕ) -independent \downarrow Global norm. factor ^o	
Yield function	Dispersion	Fig.12	$\lesssim \pm 4\%$	< 0.2%	$\lesssim 120$	$\lesssim 14$	(R_c,ϕ) dependent	
Transfer <i>I</i> function	Sigmoid $(R_c, x = +\frac{\sigma}{0,1})$ $H(R_c + \Delta R_c): x = \frac{(\Delta R_c/R_c)}{0.05}$ $- R_c(t): \frac{\Delta R}{R} \lesssim +0.2\%/y$ $- R_c^{\text{eff}} \rightarrow R_c^{\text{app}}: +3\%$	Fig.13 Fig.13 §5.2.2 §5.2.2	-2x% -2x% -0.4%/yr -1.2%	-0.5 <i>x</i> % - <i>x</i> % -0.1%/yr -0.3%	+66x +66x +13/yr +40	+35x +71x +7/yr +21	For $R_c \gtrsim 5$ GV For $R_c \gtrsim 5$ GV Depends on location Depends on R_c	
Time-dep. effects	Pressure Temperature Vapour water Snow coverage Diurnal variation	$ \begin{array}{l} \S{5.3.1}\\ \S{5.3.2}\\ \S{5.3.3}\\ \S{5.3.4}\\ \S{5.4} \end{array} $	$\pm 0.2\%$ $\pm 0.5\%$ $\pm 0.3\%$ -7% 0.24%	$\pm 0.2\%$ $\pm 4\%$ $\pm 0.1\%$ - 0.24%	$\pm 6 \\ \pm 15 \\ \pm 10 \\ +230 \\ 8$		$\begin{array}{c} DC^{\ddagger} \\ DC^{\ddagger} \\ NC^{\ddagger} \\ NC^{\ddagger} \end{array}$ $\begin{array}{c} NC^{\ddagger} \\ NC^{\ddagger} \ (1 \ yr \ period) \\ NC^{\ddagger} \ (24h \ period) \end{array}$	
NM detector effects	Temperature xNM6 vs $yNM64Surroundings (hut)$		+0.05%/C few % few %	- -	$^{-1.5/C}_{\sim 100}_{\sim 100}$	- - -	(t, R_c, ϕ) -independent \downarrow Global norm. factor ^{\$}	

Error budget on count rates and modulation level

Ingredient	Effect	Paper	per $\frac{\Delta N}{N}$			[MV]	Comment
			NM	μ	NM	μ	
Solar modulation Cut-off rigidity	$ \phi \in [0.2, 1.5] \ GV \\ R_c \in [0, 10] \ GV $	Fig. 16 Fig. 11	[+15,-25]% [+10,-20]%	$^{[+5,-10]\%}_{[0,-5]\%}$	-	-	$ \begin{array}{ll} w.r.t. & \phi = 0.5 \ GV \\ w.r.t. & R_c = 5 \ GV \end{array} $
TOA flux	p and He CR data IS flux dispersion¶ Heavy species	Fig. 12 Fig. 12 Fig.1	${\pm 2\%} {\pm 6\%} {\pm 0.6\%}$	${\pm 2\%} {\pm 8\%} {\pm 0.6\%}$	$\pm 66 \\ \pm 200 \\ \pm 20$		(t, R_c, ϕ) -independent \downarrow Global norm. factor ^{\$}
Yield function	Dispersion	Fig.12	$\lesssim \pm 4\%$	< 0.2%	$\lesssim 120$	$\lesssim 14$	(R_c,ϕ) dependent
Transfer <i>H</i> function	Sigmoid $(R_c, x = +\frac{\sigma}{0,1})$ $H(R_c + \Delta R_c): x = \frac{(\Delta R_c/R_c)}{0.05}$ $- R_c(t): \frac{\Delta R}{R} \lesssim +0.2\%/y$ $- R_c^{\text{eff}} \rightarrow R_c^{\text{app}}: +3\%$	Fig.13 Fig.13 §5.2.2 §5.2.2	-2 <i>x</i> % -2 <i>x</i> % -0.4%/yr -1.2%	-0.5x% -x% -0.1%/yr -0.3%	+66x +66x +13/yr +40	+35x +71x +7/yr +21	For $R_c \gtrsim 5$ GV For $R_c \gtrsim 5$ GV Depends on location Depends on R_c
Time-dep. effects	Pressure Temperature Vapour water Snow coverage Diurnal variation	$ \begin{array}{l} $	$\pm 0.2\%$ $\pm 0.5\%$ $\pm 0.3\%$ -7% 0.24%	$\pm 0.2\%$ $\pm 4\%$ $\pm 0.1\%$ - 0.24%	${\pm 6} {\pm 15} {\pm 10} {+230} {8}$	$_{\pm 290^{\dagger}}^{\pm 14}_{\pm 8}^{-1}_{-17}$	$\begin{array}{c} DC^{\ddagger} \\ DC^{\ddagger} \\ NC^{\ddagger} \\ NC^{\ddagger} \end{array}$ $\begin{array}{c} NC^{\ddagger} \\ NC^{\ddagger} (1 \text{ yr period}) \\ NC^{\ddagger} (24 \text{h period}) \end{array}$
NM detector effects	Temperature xNM6 vs $yNM64Surroundings (hut)$		+0.05%/C few % few %	- -	$^{-1.5/C}_{\sim 100}_{\sim 100}$	- -	(t, R_c, ϕ) -independent \downarrow Global norm. factor ^o

 \rightarrow Modulation level time series for well chosen ground-based detectors \rightarrow Add new (more precise) 'homogeneous' sets of modulation level in CRDB \rightarrow Use CR data + NM data to find IS flux and test \neq modulation models

Ghelfi *et al.* (in prep.)

Validation on NM latitude surveys

- 1. Latitude surveys (vs Rc) every 11 yr at solar minimum
- 2. Use CR data at same epoch to find ϕ
- 3. Check surveys with calculated count rates

 \rightarrow Up to 10 GV, our yield gives best fit \rightarrow Other yield functions more or less OK as well (dispersion)