A solution to the cosmic ray anisotropy problem

Philipp Mertsch, KIPAC, Stanford with Stefan Funk, arXiv:1407.xxxx

CRISM 2014, Montpellier 27 June, 2014

$$Why anisotropy? (II)$$
$$|\delta| = \frac{\phi_{\max} - \phi_{\min}}{\phi_{\max} + \phi_{\min}} = \frac{\phi(\vec{r} + \vec{\lambda}) - \phi(\vec{r} - \vec{\lambda})}{\phi(\vec{r} + \vec{\lambda}) + \phi(\vec{r} - \vec{\lambda})} \simeq \frac{2\lambda |\nabla \phi(\vec{r})|}{2\phi(\vec{r})} = \frac{3D}{c} \frac{|\nabla \phi(\vec{r})|}{\phi(\vec{r})}$$

$$\vec{\delta} = \frac{3D}{c} \frac{\vec{\nabla} n_{\rm CR}}{n_{\rm CR}}$$

Experimental situation

Source stochasticity

Blasi & Amato, *JCAP* **01** (2012) 011

Measured vs. predicted diffusion coefficient

 $D = D_0 (\mathcal{R}/\mathrm{GV})^{\delta}$

from fitting B/C:

$$\delta = 0.33 \Rightarrow D_0 \simeq 4.0 \times 10^{28} \,\mathrm{cm}^2 \mathrm{s}^{-1}$$
$$\delta = 0.55 \Rightarrow D_0 \simeq 2.3 \times 10^{28} \,\mathrm{cm}^2 \mathrm{s}^{-1}$$

for
$$z_{\rm max} = 4 \, \rm kpc$$

from quasi-linear theory:

turbulence spectrum $W(k) \propto k^{-q}~$ where $~kW(k) \sim \delta B^2(k)$

$$D_{||} \sim r_g \left(\frac{r_g}{L}\right)^{q-1} \left(\frac{\delta B}{B_0}\right)^2$$

falls short of measured values (for $B_0=4\,\mu{
m G}$ and $L=100\,{
m pc}$)

$$D_{||,0} = 4.3 \times 10^{27} \,\mathrm{cm}^2 \mathrm{s}^{-1} \left(\frac{\delta B}{B_0}\right)^{-2} \text{ for } 2 - q = \delta = 0.33$$
$$D_{||,0} = 1.6 \times 10^{26} \,\mathrm{cm}^2 \mathrm{s}^{-1} \left(\frac{\delta B}{B_0}\right)^{-2} \text{ for } 2 - q = \delta = 0.5$$

Conclusion I

Conclusion II

- maybe the predicted global gradient is too large
- also in disagreement with gamma-ray data
- vary diffusion coefficient with galacto-centric radius

•
$$D_{||} \propto \left(rac{\delta B}{B_0}
ight)^{-2}$$
 but $D_{\perp} \propto \left(rac{\delta B}{B_0}
ight)^2$

- turbulence level follows source density q(r)
- in the inner Galaxy escape is dominated by perpendicular diffusion
- simulated by $D \propto q(r)^\tau$

Evoli *et al.*, *PRL* 108 (2012) 211102

Ensemble averaging

12. Test Particle Approach 1. Historychy of Transport Equations		
Hierarchy of Thank	1 heory	21
	(12	1.106
La classes W2W2	we	00
After having established the nature and sources of cosmic parameters of the effect of these plasma waves on the cosmic rays.		ga fe
now turn to the state	5)	ler at
12.1 Quasilinear Theory View equations (8.2.1)		tre
We start from the relativisate value $\partial f_a + \dot{p} \cdot \frac{\partial f_a}{\partial p} = S_a(x, p, t)$, (1)	2.1.1)	w.e
$\partial t = \partial x = \partial p$		(1)
with the equation $\dot{p} = q_a \left[E_T(x, t) + \frac{v \times B_T(x, t)}{c} \right]$, (1)	2.1.2a)	ng
$\dot{x} = v = \frac{1}{\gamma m_a}$ (1)	2.1.20)	ča)
S_{α} in (12.1.1) denotes sources and sinks of particles. Because of t S_{α} in (12.1.1) denotes sources are neglect any large-scale electric field	d in the a super-	(49
conductivity of cosmic parameters field entering (12, 1.20) – system, so that the total electromagnetic field $B_0 = B_0 e_2$ and the plasma tu \overline{c} the write from magnetic field $B_0 = B_0 e_2$ and the plasma tu	rbulence	,
position of the dimension $(\delta E, \delta B)$, i.e. $E_{T} = \delta E(x, t)$.	(12.1.3)	3)
$B_T = D_0 + \delta D_0 + \delta D_0$ of the evolution of the particles in the uniform magnetic	c field we dinates of	4)
Because of the Scherested in their actual potential are not so much interested in their actual potential the guiding center $\psi \times e_z$	(12.1.4)	.,
$R = (X, Y, Z) = Z + \epsilon \Omega$ Ω as before denotes the absolute value of the particlefs gyro	prequency evenient to	0
where I as obtained and $\epsilon = q_{-}/ q_{+} $ the charge $a_{0,0} = r_{-}$ in the uniform field and $\epsilon = q_{-}/ q_{+} $ the many mean time space define use again spherical coordinates (p, μ, ϕ) in momentum space define $a_{0,0} = a_{0,0} = a_{$	(12.1.5)	
$p_s = p \cos \phi \sqrt{1 - \mu^2}, p_y = p \sin \phi \sqrt{1 - \mu^2},$		
	(12.1.9c)	
In the derivation of (12.1.9) we have introduced	(12.1.9f)	
$\delta B_{L,R} \equiv \frac{1}{\sqrt{2}} (\delta B_s \pm \imath \delta B_y), \delta B_{\parallel} = \delta B_s,$ (1)	21.10->	
··· ··· ··· ··· ··· ··· ··· ··· ··· ··		

- distribution function $f(\vec{x}, \vec{p}, t)$ develops under influence of $\delta B(\vec{x})$ and $\delta E(\vec{x})$
- we predict only the ensemble average $\langle f(\vec{x},\vec{p},t)\rangle$ for ensemble averaged force term
- usually, this is determined from Gaussian random B-field, characterised by W(k)
- we live in **one particular realisation** of random magnetic field!

 \rightarrow deviations from ensemble average

Schlickeiser, Cosmic Ray Astrophysics

Anisotropic diffusion

	F	
Basticle Approach 1.	1	
12. Test Particle Approacht Equations		
Hierarchy of Transport Equ	T	heory
THUR		
		/12.1
	H	(14.1.)
a mic plasma wa	ives we	
and ablished the nature and sources of cosmic ravs.		
After having established of these plasma waves on the country		
now turn to the entry		15
		9
12.1 Quasilinear Theory		
12.1 Quantitions (8.2.1)		1
We start from the relativistic Viasov equation ,	(10.2.2)	1 1
$\partial f_a = \partial f_a = S_a(x, p, t)$,	(12.1.1)	1 1
$\frac{\partial f_0}{\partial x} + v \cdot \frac{\partial x}{\partial x} + p \cdot \frac{\partial p}{\partial p}$		1 1
01		1 1
with the equations of motion		
$v \times B_{T}(x,t)$	(12.1.2a)	1 1
$\dot{p} = q_a \left[E_T(x, t) + c \right]$	(19.1.2b)	11
p	(14.1.20)	24
$\dot{x} = v - \frac{\gamma m_a}{\gamma m_a}$	C also high	11
and sinks of particles. Because of	field in the	11
S _a in (12.1.1) denotes sources any large-scale electric	is a super-	12.
conductivity of cosmic plasmic plasmic field entering (12.1.20)	turbulence	11
system, so that the total magnetic field $B_0 = B_0 e_2$ and the pro-		M
position of the united by	(+0.1.2)	- W
$(\delta E, \delta B)$, i.e. $E_T = \delta E(x, t)$.	(12.1.3)	13
$B_{\rm T} = B_0 + \delta D(x, v), = 1$	setic field we	1
to a proportation of the particles in the uniform mag-	pordinates of	
Because of the ground interested in their actual position as in		
are not so independent $v \times e_z$	(12.1.4)	1
the galaxies $R = (X, Y, Z) = x + \frac{1}{\epsilon \Omega}$	f-manoney	
is a solution the absolute value of the particlets	convenient to	0
where Ω as before denotes the $q_0/ q_0 $ the charge sign. It is also	efiped by	
in the uniform new coordinates (p, μ, ϕ) in momentum space of		
use again optimize $p_z = p\mu$	(12.1.5)	1
$p_g = p \cos \phi \sqrt{1 - \mu^2}, p_y = p \sin \phi \sqrt{1 - \mu^2}$		
		10-
	(12.1.9a)	
	(12.1.9e) (12.1.9c)	
In the derivation of (12.1.9) we have intended	(12.1.9c) (12.1.9f)	
In the derivation of (12.1.9) we have introduced	(12.1.9c) (12.1.9f)	
In the derivation of (12.1.9) we have introduced $\delta \eta_{LR} = \frac{1}{2} \left(\delta P_{c} \pm \delta R_{c} \right)$, (2)	(12.1.9e) (12.1.9f)	
In the derivation of (12.1.9) we have introduced $\delta B_{k,R} = \frac{1}{\sqrt{2}} \left(\delta B_x \pm \imath \delta B_y \right), \delta B_\ = \delta B_x ,$	(12.1.9e) (12.1.9f) (12.1.10a)	F
In the derivation of (12.1.9) we have introduced $\delta B_{\rm k,R} \equiv \frac{1}{\sqrt{2}} \left(\delta B_x \pm i \delta B_y\right), \ \ \delta B_{\rm I} = \delta B_x \; ,$	(12.1.9c) (12.1.9f) (12.1.10a)	

Schlickeiser, Cosmic Ray Astrophysics

- decompose distribution function $f_0(\vec{x},p,\mu,t) \equiv F(\vec{x},p,t) + g(\vec{x},p,\mu,t)$
- dipole = first harmonic of anisotropic part

$$|\vec{\delta}| = \frac{\int_{-1}^{1} \mathrm{d}\mu \,\mu g(\mu)}{\int_{-1}^{1} \mathrm{d}\mu \,f_0} = \dots = -\frac{1}{4v} \frac{\partial F/\partial z}{F} D_{||}$$

- → amplitude depends on gradient *along* background B-field
- → orientation not in direction of gradient but of background B-field
- can this help decrease the dipole amplitude?

Numerical approach

Numerical approach

- 1. set up large scale gradient at time $(t_0 \Delta t)$: $f(\vec{x}, \vec{p}, t_0 \Delta t) = \dots$
- 2. back-track large number of particles $i \in N$ for time Δt : $\{\vec{x}_i(t_0), \vec{p}_i(t_0)\} \rightarrow \{\vec{x}_i(t_0 - \Delta t), \vec{p}_i(t_0 - \Delta t)\}$
- 3. Liouville's theorem:

$$df = 0 \quad \Rightarrow \quad f(\vec{x}_{\text{obs.}}, \vec{p}_i(t_0)) = f(\vec{x}_i(t_0 - \Delta t), \vec{p}_i(t_0 - \Delta t))$$

check: diffusion coefficient

- average over large number of trajectories and B-field realisations
- isotropic diffusion coefficient in agreement with "theory"

check: diffusion coefficient

- average over large number of trajectories and B-field realisations
- anisotropic diffusion coefficients in agreement with quasi-linear theory

w/background B-field@0°

w/background B-field@60°

w/background B-field@90°

w/background B-field@0°

w/background B-field@90°

Conclusion

local diffusion not in ensemble average but in particular realisation of B-field
 relative orientation between B-field and gradient

considerable variations

B-field and gradient @ 90°

finding sources?