

APEX observations of non-stationary magneto-hydrodynamical shocks in W44

Sibylle Anderl, IPAG Grenoble

CRISM 2014, Montpellier, June 27th

Collaborators: Antoine Gusdorf (Paris), Rolf Güsten (Bonn)

- MHD-shocks
- CO observations of W44
- Shock analysis
- Results
- Summary

What is a shock?

A shock is an irreversible, pressure-driven fluid-dynamical disturbance, moving faster than the local sound speed in the surrounding medium.

FORS/VLT/ESO

NASA/ESA/JHU/R.Sankrit & W.Blair

Importance of shocks

Shocks are all over and prominent in the ISM. They are important because:

• They propagate the energetic feedback of events such as supernovae, stellar winds, cloud-cloud collisions, or expanding HII regions.

The energetic balance of galaxies

- CO ladder observations in external galaxies
 Large scale effects from PDR, XDR, and shock contributions
 NGC 253 Hailey-Dunsheath et al. 2008; M82 Panuzzo et al. 2010; NGC 891 Nikola et al. 2011,
 NGC 6240 Meijerink et al. 2013
- Herschel/PACS observations of NGC 1068 Hailey-Dunsheath et al. 2012

CRISM - Sibylle Anderl - 27. 06. 2014

The energetic balance of galaxies

Importance of shocks

Shocks are all over and prominent in the ISM. They are important because:

- They propagate the energetic feedback of events such as supernovae, stellar winds, cloud-cloud collisions, or expanding HII regions.
- They strongly affect the chemistry of the interstellar medium.
- Bright shock emission provides excellent diagnostics for the study of the conditions in the shocked medium

C- and J-type shocks

Depending on the value of the shock velocity, V_s, relative to the ions' magnetosonic speed, V_{ims}, and the sound speed, C_s, two basic types of shocks can be distinguished: J-type (V_{ims} < V_s) and C-type (C_s < V_s < V_{ims}) shocks.

e.g. Draine 1980

The Paris-Durham shock code

CRISM - Sibylle Anderl - 27. 06. 2014

Supernova remnants interacting with molecular clouds

The modelling of shock observations can quantify the physical and chemical conditions of shocked regions and help to understand the environmental impacts of shocks.

Gusdorf, Anderl et al. 2012

W44 (a.k.a. G34.7-0.4, or 3C 392)

- Prototype of the so-called mixed-morphology supernova remnant (centrally concentrated X-ray emission and shell-like radio morphology) Rho & Petre 1998
- Distance: ~ 3kpc e.g. Radhakrishnan et al. 1972, Abdo et al. 2010
- Age: 2 x 10⁴ years, in the radiative phase over most of its surface Cox et al. 1999, Chevalier 1999
- Harbours a 267 millisecond radio pulsar Wolszczan et al. 1991
- Known to interact with a molecular cloud along its eastern limb e.g. Wootten 1977, Reach & Rho 1996
- Observed in cosmic rays, evidence for the acceleration of COSMIC-ray protons Esposito et al. 1996, Abdo et al. 2010, Giuliani et al. 2011, Ackermann et al. 2013

CRs in W44

- Close and bright gamma-ray source
- First SNR clearly showing the "pion bump" from π^0 -decay photons
- Hadronic models need information on density and magnetic field

Yoshiike et al. 2013

IPAG

CRs in W44

Observations

Observation of shocked molecular regions in • multiple ¹²CO rotational transitions (7-6, 6-5, 4-3, 3-2) •¹³CO

CRISM - Sibylle Anderl - 27. 06. 2014

W44E

Anderl et al. 2014, accepted

W44E

CRISM - Sibylle Anderl - 27. 06. 2014

Data fitting

W44FI - blue wing

Anderl et al. 2014, accepted

W44E - Fits

	Position	integration interval	filling factor	shock type	b	velocity [km s ⁻¹]	$n_{\rm H} [{\rm cm}^{-3}]$	age [yr]
	W44E1	(-20 to 44.5 km s ⁻¹)	0.75	CJ	2	35	104	915
		low velocity fit:		CJ	1.75	20	10^{4}	1745
		(44.5 to 120 km s ⁻¹)	0.5	CJ	1.5	30	104	1190
		low velocity fit:		CJ	1.75	20	104	2240
	W44E2	(-20 to 44.8 km s ⁻¹)	0.5	CJ	2	30	10 ⁴	1390
		low velocity fit:		CJ	1.5	22	<i>10</i> ⁴	1945
		(44.8 to 120 km s ⁻¹)	0.75	CJ	1.75	35	104	680
		low velocity fit:		CJ	1.0	20	104	860
Anderl et al.	2014, acc	epted						

W44F - Fits

Anderl et al. 2014, accepted

Position	integration interval	filling factor	shock type	b	velocity [km s ⁻¹]	$n_{\rm H} [{\rm cm}^{-3}]$	age [yr]
W44F1	(0 to 46.2 km s ⁻¹)	0.5	CJ	2	20	104	2900
	(46.2 to 90 km s ⁻¹)	0.5	CJ	2	20	10 ⁴	2900
W44F2	(0 to 45.7 km s ⁻¹)	0.5	CJ	2	22	104	2965
	(45.7 to 90 km s ⁻¹)	0.5	CJ	2	22	104	2965
W44F3	(0 to 44.4 km s ⁻¹)	0.5	CJ	2	25	104	2380
	(44.4 to 90 km s ⁻¹)	0.5	CJ	2	22	104	2965

W44 - Derived information and further constraints

- Fits require young, non-stationary shocks
- The preshock density is confined to 10⁴ cm⁻³
- The preshock magnetic field strength is 100-200 μG
- Shock velocities are between 20 and 35 km s⁻¹
- Shock ages are less than 3000 yrs.

- Shocked gas mass: 1-2 M_{Sun} per beam
- Momentum injection:1-5 x 10⁶ M_{Sun} cm s⁻¹ per beam
- Energy injection: 1-8 x 10⁴⁵ erg per beam

The energy balance of galaxies

CRISM - Sibylle Anderl - 27. 06. 2014

Summary

- Based on the modeling of new CO observations towards SNRs interacting with molecular clouds, the shock characteristics and pre-shock conditions in W44E and F were constrained and the impact of SNRs on their environment in terms of mass, momentum and energy dissipation was quantified.
- For the first time, young non-stationary shock models were shown to be consistent with the shock emission in W44E and W44F.
- The pre-shock density was constrained to 10^4 cm⁻³, the magnetic field strength is 100-200 μ G, and the shock velocities are between 20 and 35 km s⁻¹
- Upcoming publication in A&A: (accepted) "APEX observations of supernova remnants - I. Non-stationary MHD-shocks in W44", Anderl, S., Gusdorf, A., Güsten, R.