The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443

I.Telezhinsky^{1,2}, A.Wilhelm^{1,2}, R.Brose^{1,3}, M.Pohl^{1,2}, B.Humensky⁴

- 1. DESY Zeuthen, Germany
- 2. University of Potsdam, Institute of Physics & Astronomy, Germany
- 3. Humboldt University of Berlin, Germany
- 4. Columbia University, USA

Igor Telezhinsky

Particle acceleration in IC443 Montpellier, 25.06.2014

Outline

Particle acceleration

- transport equation
- diffusion coefficient and turbulence
- Magnetic turbulence spectrum
 - typical view
 - calculation
 - first results
 - approximations

Model of supernova remnant IC443. First results.

- (not so) known parameters
- modeling
- first results
- Summary

Particle acceleration: transport equation

> Assuming:

- particles scatter elastically
- their distribution is isotropic (v_{CR} >> v_{shock})

Cosmic-rays evolution can be described by diffusion-advection equation:

$$\frac{\partial N}{\partial t} = \nabla (D\nabla N - \vec{u}N) - \frac{\partial}{\partial p} \left((N\dot{p}) - \frac{\nabla \vec{u}}{3} Np \right) + Q$$

- N energy differential number density of CRs
- D energy dependent diffusion coefficient
- u plasma flow velocity
- p_t energy losses
- Q source of thermal particles

Particle acceleration: diffusion coefficient and turbulence

- > diffusion coefficient, D, defines:
 - injection of particles from thermal pool
 - acceleration efficiency and E_{max} (small **D** → large CR's residence time → high CR's E_{max})
 - number and spectral shape of escaping particles
- > escaping particles
 - produce magnetic turbulence that scatters next generation of injected particles
 - re-fill Galactic assuming $\eta = \text{const}$ (or $E_w = \text{const}$)

> diffusion coeff

$$D = \eta \frac{vr_g}{3} \qquad \qquad \eta = \frac{B_0^2}{\delta B^2} \qquad \qquad \delta B^2(k) = B_0^2 \frac{dW(k)}{dk}k$$

is strong (wrong) assumption!

$$\delta B^{2}(k) = B_{0}^{2} \frac{dE_{w}(k)}{d\ln k} \to B_{0}^{2}E_{w}(k) \qquad D = \frac{1}{E_{w}(k)} \frac{vr_{g}}{3} \qquad k = \frac{1}{r_{g}}$$

Magnetic turbulence spectrum: typical view

Magnetic turbulence spectrum: calculation

Evolution of magnetic turbulence energy density is given by transport equation:

$$\frac{\partial E_{w}}{\partial t} = k \frac{\partial}{\partial k} k^{2} D_{k} \frac{\partial}{\partial k} \frac{E_{w}}{k^{3}} - \nabla(\vec{u}E_{w}) + (\Gamma_{g} - \Gamma_{d})E_{w}$$
$$D_{k} = k^{3} v_{a} \sqrt{\frac{E_{w}}{2U}} \qquad \Gamma_{g} = \frac{v_{a} p v_{cr}}{3U} \frac{\partial N}{\partial x}$$

- E_w differential (per *In*k) energy density of magnetic turbulence
- D_k cascading coefficient (Zhou & Matthaeus 1990)
- U energy density of background magnetic field
- u plasma flow velocity
- v_a Alfven velocity
- Γ_{g} resonant mode growth rate (Bell 1978)
- Γ_{d} turbulence damping rate
- N energy differential number density of CRs I.Telezhinsky | Particle acceleration in IC443 | 25.06.2014 | Page 6

Particle spectrum

IC443: wide view

IC443: multi-wavelength source, radio/optical

IC443: multi-wavelength source - x-rays

ROSAT (skyview): 0.1 – 2.4 keV

IC443: multi-wavelength source – x-rays, HE γ-rays

IC443: multi-wavelength source – x-rays, HE, VHE γ-rays

ROSAT (skyview)

Fermi (skyview)

IC443: parameters

- type: mixed-morphology
 - radio shell, center-filled X-rays
- > age (unclear): 3-30 kyr
- > distance: 1.5 kpc
- > size: 45' -> 20 pc
 - two half-spheres: R₁ = 7.7 pc, R₂ = 12.1 pc
- indications of interaction with dense material
 - n = 10 10⁴ cm⁻³
- radiative stage of evolution?
 - slow shocks

IC443: modeling HD and CRs

- > t = 12500 yr
- E_{SN} = 1e51 ergs
- > $n_1 = 12 \text{ cm}^{-3} \rightarrow R_1(t) = 7.7 \text{ pc}$
 - $t_{tr} = 7780 \text{ yr}, V_{sh} = 0.5 V_{sh}(t_{tr}) = 170 \text{ km/s}$
- > $n_2 = 1.9 \text{ cm}^{-3} \rightarrow R_2(t) = 12.1 \text{ pc}$
- **>** B_{0,1} = 20 μG
- > $B_{0,2} = 6 \mu G$
- D is calculated from analytically assumed turbulence spectrum
- Consider injected + background galactic CRs

E_{CR} = 0.05 E_{SN}

IC443: modeling emission

- ¹²CO image traces dense material
- Molecular cloud:
 - d_{MC} ~ 13 pc
 - R_{MC} ~ 3 pc
 - $M_{MC} \sim 10^5 M_{Sun}$
- pion-decay
 - two SNR hemispheres
 - dense material illuminated by escaped CRs

IC443: first results – proton spectra

IC443: first results – radiation spectra

IC443: first results – radiation maps

Summary

- Magnetic turbulence spectrum is not "white noise"
 - details on the spectral shape are not known
 - requires coupling and simultaneous solution of both turbulence and particle transport equations
- If taken into account, turbulence spectrum affects particle diffusion, which modifies CR distributions
 - inside the SNR (downstream of the shock)
 - at the position of target material (escaped particles)
- > Observed spectral breaks may be naturally obtained
- The proposed model may explain HE/VHE data on IC443
 - thorough analysis of dense matter distribution around SNR is required to build realistic emission models

