Instabilities of Cosmic Rays

Ellen Zweibel

zweibel@astro.wisc.edu

Departments of Astronomy & Physics

University of Wisconsin, Madison

and

Center for Magnetic Self-Organization

in

Laboratory and Astrophysical Plasmas

Importance of the Problem

- Propagation: confinement time, formation of halos, penetration into clouds, predict ionization rates, synchrotron, γ -ray, & inverse Compton emission.
- Acceleration: efficiency of DSA, stochastic acceleration.
- Collisionless momentum & energy deposition in background medium; feedback.

Instability Landscape

Drury

Gyroresonant Pitch Angle Scattering

For transverse magnetic fluctuations of frequency ω & parallel wavenumber k,

$$\omega - kv\mu \pm n\omega_c = 0,$$

where $\mu \equiv \mathbf{v} \cdot \mathbf{B}/vB$ & $n = \pm 1$ is the strongest resonance. For $|\omega/kvu| \ll 1$ the resonance condition is

$$\mu = \mp \frac{qB}{cp} \equiv \frac{p_1}{p}.$$

Summing over many uncorrelated scatterings, the mean scattering rate ν is

$$\nu = \frac{\pi}{4}\omega_c k_r \frac{\delta B_k^2}{B^2}.$$

Fokker-Planck Equation

For $\omega_c^{-1} \ll \nu^{-1} \ll \tau_{dyn}$, a Fokker-Planck eqn. for the gyor-averaged distribution function holds

$$\begin{aligned} \frac{\partial f}{\partial t} + \mu v \hat{\mathbf{n}} \cdot \nabla f &= \frac{df}{dt}|_{coll}; \\ \frac{df}{dt}|_{coll} &= \sum_{\pm} \frac{\partial}{\partial \mu} \left[\frac{1 - \mu^2}{2} \nu_{\pm} \frac{\partial f}{\partial \mu} + \nu_{\pm} \hat{\mathbf{n}} \cdot \mathbf{w}_{\pm} m \gamma \frac{\partial f}{\partial p} \right], \end{aligned}$$

with $\pm \equiv$ direction of wave propagation & $\mathbf{w}_{\pm} \equiv \mathbf{v} \pm \mathbf{v}_{\mathbf{w}}$.

Momentum Transfer

Multiply Fokker-Planck eqn. by $p\mu$ & integrate over momentum space.

$$\frac{\partial}{\partial t}(n_c p_D) = -\nabla_{\parallel} P_c - n_{cr} \nu (v_D - v_w).$$

- Scattering drives *f* toward isotropy in the frame of the waves
- In a steady state, acceleration down the pressure gradient balances friction.
- Waves propagating in both directions contribute to ν

Energy Transfer: I

Work with the μ averaged Fokker-Planck eqn. for F

$$\frac{\partial F}{\partial t} + \frac{1}{3p^2} \frac{\partial}{\partial p} (p^3 \mathbf{u}) \cdot \nabla F - (\nabla \cdot \mathbf{u}) \frac{p}{3} \frac{\partial F}{\partial p} = \frac{dF}{dt}|_{coll};$$

$$\frac{dF}{dt}|_{coll} = \nabla_{\parallel} D_{\parallel} \nabla_{\parallel} F + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \right) \frac{\partial F}{\partial p},$$

where $\mathbf{u} \equiv \mathbf{v} + \langle \frac{3}{2} (1 - \mu^2) \frac{\nu_+ \mathbf{w}_+ - \nu_- \mathbf{w}_-}{\nu_+ + \nu_-} \rangle$, $D_{\parallel} \equiv v^2 \langle \frac{1 - \mu^2}{2(\nu_+ + \nu_-)} \rangle$,
 $D_{pp} \equiv 4m^2 \gamma^2 w^2 \langle \frac{1 - \mu^2}{2} \frac{\nu_+ \nu_-}{\nu_+ + \nu_-} \rangle$.

$$\bullet$$
 u is a mean (fluid plus wave) velocity.

D_{pp} represents 2nd order Fermi acceleration & requires waves traveling in both directions.

Energy Transfer: II

Multiply by particle energy $\epsilon \sim cp$ & integrate over momentum space. Ignoring Fermi term for now,

$$\frac{\partial U_c}{\partial t} + \mathbf{u} \cdot \nabla U_c = -\frac{4}{3} U_c \nabla \cdot \mathbf{u} + \nabla \cdot \kappa_{\mathbf{c}} \cdot \nabla U_c$$

as we'd expect for a relativistic, diffusive gas with velocity $\mathbf{u}=\mathbf{v}+\mathbf{v_w}.$

Energy Transfer: III

Combine with the ideal fluid equations to yield an energy transport equation

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho v^2 + \frac{P_g}{\gamma_g - 1} + \frac{P_c}{\gamma_c - 1} \right) = -\nabla \cdot \mathbf{F} + Q;$$

$$\mathbf{F} = \mathbf{v} \left(\frac{1}{2} \rho v^2 + \frac{\gamma_g P_g}{\gamma_g - 1} \right) + \mathbf{u} \frac{\gamma_c P_c}{\gamma_c - 1} - \frac{\kappa_c \nabla P_c}{\gamma_c - 1},$$
$$Q = \mathbf{v}_{\mathbf{w}} \cdot \nabla P_c.$$

What is v_w?

- Self confinement picture: Alfven waves amplifed by super-Alfvenic cosmic rays flowing down their pressure gradient.
 - $Q = |v_A \nabla_{\parallel} P_c|.$
- Extrinsic turbulence picture: Waves produced by an MHD turbulent cascade.
 - For balanced turbulence, Q = 0 & there is some Fermi acceleration.
 - For imbalanced turbulence, could be similar to self confinement picture.
- Long recognized that self confinement only works up to a certain energy.

Cosmic Ray Heating of Diffuse Interstellar Gas

Left: Galactic Ha emission, showing a thick layer of warm ionized gas. Right: Model of thermal equilibrium, including cosmic ray heating (Wiener et al. in preparation)

Galactic Wind

<u>Top left</u>: Soft x-ray sky, <u>Bottom left</u>: Magnetic flux tube geometry. <u>Top right</u>: Domains of flow, with mass loss rates <u>Bottom right</u>: Gas temperature with & without cosmic ray heating.

Everett et al. 2008 ApJ

Streaming Instability

Resonance condition

$$k \sim \frac{qB}{p\mu}$$

Higher energies resonate with longer wavelength waves, but as $\mu \to 0$, $k \to \infty$. Instability growth rate

$$\Gamma_c \sim \omega_{cp} \frac{n_c(>p_1)}{n_i} \left(\frac{v_D}{v_A} - 1\right).$$

Because of powerlaw energy spectrum, Γ_c declines with cosmic ray energy; for $f(p) \propto p^{-a}$, $n_{cr}(>p_1) \propto p_1^{3-a}$. Linearly polarized waves are unstable to drift anisotropy; circularly polarized waves to pressure anisotropy.

Damping Balances Growth

- Ion neutral friction in weakly ionized regions: typically eliminates coupling under mean Milky Way conditions.
- Nonlinear Landau damping on thermal ions: especially important in hot regions.
- Shearing apart of wave packets by background turbulence.

Marginal stability condition plus relationship between anisotropy & pressure gradient determines pressure profile & diffusivity κ_c . Self confinement works for E < 100 - 200GeV for average Milky Way conditions.

Partially Ionized Regions

- Are cosmic rays repelled from high *B* regions (e.g. molecular clouds) by magnetic mirroring?
- Can diffusive shock acceleration operate in molecular gas?
- Do cosmic rays transfer momentum & energy to cool gas in galactic outflows?
- Figure of merit:

$$R_{\Gamma} \equiv \frac{\Gamma_c}{\Gamma_{in}}$$

Alfven Waves in Weakly Ionized Gas

- Strongly coupled: $\omega/k \sim B/\sqrt{4\pi\rho} \equiv kv_A$; $\Gamma_{in} \sim \omega^2/(2\nu_{ni})$.
- Weakly coupled: $\omega/k \sim B/\sqrt{4\pi\rho_i} \equiv kv_{Ai}$; $\Gamma_{in} \sim \nu_{in}/2$.
- Strong coupling for $k < k_l \equiv 2\nu_{ni}/v_A$; weak coupling for $k > k_u \equiv \nu_{in}/(2v_{Ai})$.
- Nonpropagation for $k_l < k < k_u$.

Instability Regimes

Galactic molecular gas: $n_i \sim 10^{-5} n_n^{1/2}$.

- $p_1(k_u)/m_pc \sim 1.5 \times 10^4 B_{\mu}^2/n_n^{5/4}$: scattering waves are weakly coupled w. maximal Γ_{in} .
- $p_1(k_l)/m_pc \sim 3.4 \times 10^5 B_{\mu}^2/n_n$; scattering waves are strongly coupled w. weaker $\Gamma_{in} \propto k^2$.
- For $p_1(k_u) < p_1 < p_1(k_l)$, waves do not propagate.

Trapping in Partially Ionized Gas

A Simple Cloud Model

J. Everett & EZ 2011

- ID setup w. simple tanh profiles prescribed for ρ , T, x_i , constant B
- Solve steady state equations for
 - P_{cr} with advection, diffusion, & collisional losses
 - *P_w* with excitation by cosmic ray streaming & collisional damping
 - Imposed intercloud cosmic ray pressure gradient appropriate to a galactic wind
- Typically, coupling of cosmic rays to cloud breaks down inside a thin skin, although increased B, P_{cr}, and x all increase the coupled region.

Cosmic Ray Coupling to Clouds

Top left: Model cloud setup. Top Right: Cosmic ray & wave pressure vs. depth. Bottom right: Transition from advection to diffusion, followed by free streaming -> **No force on the bulk of the cloud**.

DSA in Molecular Clouds

Figure of merit is

$$R_{\Gamma} \sim \frac{\omega_{cp}}{\nu_{in}} \frac{n_{cr}}{n_i} \frac{v_S}{v_A} \sim 10^{10} \frac{n_{cr}}{n_i} \frac{v_S}{100 km/s} \left(\frac{\rho_i}{\rho_n}\right)^{1/2}$$

Conditions for excitation can easily be met once cosmic ray acceleration is already efficient.

Coupling in Galactic Outflows

Problem: Galactic outflows are multiphase, & include both hot & cool gas.

Figure of merit is

$$R_{\Gamma} \sim \frac{\omega_{cp}}{\nu_{in}} \frac{n_{cr}}{n_i} \sim 10^7 \frac{B_{\mu}}{n_n} \frac{n_{cr}}{n_i}$$

■ In M82, $B_{\mu} \sim 200 - 300$, $n_{cr} \sim 100 - 200 n_{crMW} \rightarrow$ excitation can overcome damping.

Mirroring

Particles "feel" the mirror force only if their distribution is anisotropic:

$$\frac{df}{dt}_{\nabla B} = -\frac{p(1-\mu^2)}{2m} \frac{d\ln B}{ds} \frac{\partial f}{\partial \mu}$$

- Does scattering prevent mirroring in molecular clouds?
- Can pressure ansiotropic destabilize waves & increase scattering?

Do Cosmic Rays Sample the Mean ISM Density?

Boettcher et al. 2013

Fits to the Gamma Ray Spectrum of M82

FIG. 5.— \Box -ray spectra. Left: \Box -ray spectrum with parameters p = 2.1, $M_{mol} = 4 \times 10^8 M_{\odot}$, $B = 275 \Box G$, $v_{adv} = 500 \text{ km s}^{-1}$, $n_{ion} = 100 \text{ cm}^{-3}$. This spectrum is the best fit to the \Box -ray data. Right: \Box -ray spectrum with parameters p = 2.2, $M_{mol} = 4 \times 10^8 M_{\odot}$, $B = 275 \Box G$, $v_{adv} = 400 \text{ km s}^{-1}$, $n_{ion} = 150 \text{ cm}^{-3}$. This is the \Box -ray spectrum that corresponds to the best radio fit for a spectral index of p = 2.2. The solid black lines represent the total \Box -ray flux, the dashed red lines represent the contribution from neutral pion decay, and the dotted blue lines represent the contribution from bremsstrahlung. \Box -ray data include: Ackermann et al. (2012) (Fermi - blue circles), Acciari et al. (2009) (VERITAS - red squares). Data with downward arrows represent upper limits for both Fermi and VERITAS data.

YEGZ ApJ 2013

Fitting Parameters

TABLE 3		
Best-Fit	MODEL	PARAMETERS

Physical Parameters	Best-Fit Value
Magnetic Field Strength (B) Advection (Wind) Speed (V _{adv}) Ionized Gas Density (n _{ion}) Spectral Index (p) Molecular Gas Mas (M _{mol})	$\begin{array}{c} 275 \ \Box G \\ 500 \ \mathrm{km \ s^{-1}} \\ 100 \ \mathrm{cm^{-3}} \\ 2.1 \\ 4 \times 10^8 \ \mathrm{M_{\odot}} \end{array}$

Note. — Results for $\Box^2_{radio}=22.6,\, \Box^2_{\gamma}=9.6$

M82 is an excellent electron calorimeter And a ~50% proton calorimeter.

Bottleneck Effect

If v_A has a minimum, the adiabatic relation requires P_{cr} to have a maximum, which would have cosmic rays streaming up their density gradient. A plateau forms instead. From Wiener et al. 2014

Wrinkles in the Picture

- Breakdown of diffusion theory as $\mu \to 0$; does $v_D \to v_A$?
 addressed with mirroring by Felice & Kulsrud 1991.
- Drastically modified waves and growth rates for $U_c/U_B > c/v_D$.
- Modification of Alfven wave dispersion relation for $\beta > (c/v_i)^2$.

Extrinsic Turbulence

- MHD cascade is too anisotropic to scatter cosmic rays efficiently; compressive waves must be generated.
- If turbulence is balanced, cosmic rays extract energy from the background rather than donating energy to it.
- Long confinement times & low anisotropy requirements can be met, but requires a separate theory for the turbulence.

Nonresonant Instabilities

- When U_{cr}/U_B > c/v_D there is a new, nonresonant instability driven by the electron current that compensates the cosmic ray current.
- Conditions are met at shocks, and possibly in young galaxies.

Rapid Growth to Nonlinear Amplitude

Simulations suggest that the magnetic field can be amplified, producing the observed thin synchrotron rims, increasing the acceleration rate, producing a new saturated state.

Conclusions

- The "classical" theory of cosmic ray self confinement leads to a hydrodynamic description of cosmic rays that describes their coupling to the thermal gas.
- The theory breaks down in weakly ionized clouds except at high cosmic ray fluxes and/or strong ambient magnetic fields.
- Complete understanding of cosmic ray propagation & coupling to thermal gas will require progress in turbulence theory.