Cosmic-Ray Ionization of Molecular Clouds

Nick Indriolo Johns Hopkins University

Ionization and Astrochemistry

- Interstellar chemistry is driven by fast ionmolecule reactions
- Requires source of ionization
 - UV photons with *E* > 13.6 eV are absorbed by atomic H in H II regions
 - species with *IP* > 13.6 eV are primarily neutral
 - species with *IP* < 13.6 eV are singly ionized
- In diffuse and dense molecular clouds H and H₂ are ionized by cosmic rays
- $\zeta_2 = 2.3\zeta_p; \zeta_H = 1.5\zeta_p;$ Glassgold & Langer 1974 ApJ, 193, 73

An aside on ISM properties

- Dense clouds
 - $-n > 10^4 \text{ cm}^{-3}$; T~30 K; $f(\text{H}_2)$ ~1
 - $x_e \sim 10^{-7}$; carbon in CO
- Diffuse molecular clouds $-n\sim10^2$ cm⁻³; $T\sim70$ K; $f(H_2)=0.1-1$ $-x_e\sim10^{-4}$; carbon in C⁺
- Diffuse atomic clouds

 n~10 cm⁻³; *T*~100 K; *f*(H₂) < 0.1
 x_e~10⁻⁴; carbon in C⁺

Exhibit A: Dense Clouds

Exhibit B: Diffuse Clouds

Particle Interactions

Ionization

 $p + \mathrm{H_2} \twoheadrightarrow \mathrm{H_2^+} + e^{\scriptscriptstyle -} + p'$

- Spallation and Fusion $[p, \alpha] + [{}^{12}C, {}^{14}N, {}^{16}O] \rightarrow [{}^{6}Li, {}^{7}Li, {}^{9}Be, {}^{10}B, {}^{11}B]$
- Nuclear Excitation $[p, \alpha] + {}^{12}C \rightarrow {}^{12}C^* \rightarrow {}^{12}C + \gamma_{4.44 \text{ MeV}}$

Rate of Interactions

 $R_x = 4\pi G_x \int j(E)\sigma_x(E)dE$

- G_x : Interaction specific coefficient
- σ_x : Interaction cross section
- *j*(*E*)*dE*: Differential proton spectrum

Interaction Cross Sections

Indriolo & McCall 2013, Chem. Soc. Rev., 42, 7763 (and references therein)

June 26, 2014

H₂ Ionization Cross Section

Padovani et al. 2009, A&A, 501, 619 (and references therein)

Cosmic Ray Energy Distribution

- Power law in energy (φ~E^{-2.7}) spanning 12 decades in *E*, and 30 decades in flux
- Poorly constrained below 1 GeV

(1): Spitzer & Tomasko (1968)
(2): Gloeckler & Jokipii (1969)
(3): Nath & Biermann (1994)
(4): Mori 1997

What Ionization Rate Tells Us

- Cosmic-ray ionization of H and H₂ is most efficient at keV to MeV energies
- Particle spectrum is measured above about 1 GeV, but poorly constrained in energy range most important for ionization
- Determination of ionization rate from molecular observations can add constraints to low-energy particle flux

Ionization Rate From Molecules

• Rate of change for abundance of any species can be written as a differential equation accounting for formation and destruction mechanisms, e.g.,

 $\frac{d}{dt}n(\mathrm{H}_{3}^{+}) = n(\mathrm{H}_{2})n(\mathrm{H}_{2}^{+})k(\mathrm{H}_{2}|\mathrm{H}_{2}^{+}) - n(\mathrm{H}_{3}^{+})n(e)k(\mathrm{H}_{3}^{+}|e) - n(\mathrm{H}_{3}^{+})n(\mathrm{CO})k(\mathrm{H}_{3}^{+}|\mathrm{CO})$ formation destruction

- More terms can be added to account for alternate formation and destruction pathways
- Formation rates of species closely linked to cosmic-ray ionization will be influenced by ionization rate

Ion-Molecule Reactions

- H₃⁺ acts as a "universal proton donor"
- Molecular ions linked to CR ionization

Hydrogen Chemistry

- Formation
 - $CR + H_2 \rightarrow H_2^+ + e^- + CR'$
 - $H_2^+ + H_2 \rightarrow H_3^+ + H$
- Destruction
 - $H_3^+ + e^- \rightarrow H + H + H$

- Dense Clouds $- H_3^+ + CO \rightarrow HCO^+ + H_2$
 - $H_3^+ + O \rightarrow OH^+ + H_2$
- Atomic Clouds - $H_2^+ + H \rightarrow H_2 + H^+$
 - $\text{ H}_2^+ + e^- \rightarrow \text{H} + \text{H}$

Ionization Rate from H₃⁺

CR + H₂
$$\zeta_2 n(H_2) = k(H_3^+|e^-)n(H_3^+)n_e$$

$$\zeta_2 = k(\mathbf{H}_3^+|e^-) x_e n_{\mathbf{H}} \frac{N(\mathbf{H}_3^+)}{N(\mathbf{H}_2)}$$

- $k(H_3^+|e)$ measured in laboratory (2×10⁻⁷ cm³ s⁻¹)
- x_e approximated by $x(C^+)$ (1.5×10⁻⁴)
- $n_{\rm H}$ estimated from molecular observations (100 cm⁻³)
- $N(H_2)$ measured or estimated (10²⁰-10²¹ cm⁻²)
- $N(H_3^+)$ determined from NIR observations

Targeted Transitions

Energy level diagram for the ground vibrational state of H_3^+

- Transitions of the v₂ ← 0 band of H₃⁺ are available in the infrared
- Given average diffuse cloud temperatures (70 K) only the (*J*,*K*)=(1,0) & (1,1) levels are significantly populated
- Observable transitions are:
 - $R(1,1)^{u}$: 3.668083 µm
 - *R*(1,0): 3.668516 μm
 - $R(1,1)^{l}$: 3.715479 µm
 - *Q*(1,1): 3.928625 μm
 - *Q*(1,0): 3.953000 μm

Example H₃⁺ Observations

Indriolo 2012,	
Phil. Trans. R. Soc. A 370, 514	42

	$N({\rm H_3^+})$ (10 ¹⁴ cm ⁻²)	ζ ₂ (10 ⁻¹⁶ s ⁻¹)
HD 110432	0.52	3.9±2.1
HD 313599	3.16	6.8±5.1

Albertsson et al.	2014,	ApJ,	787,	44
-------------------	-------	------	------	----

	$N({\rm H_3^+})$ (10 ¹⁴ cm ⁻²)	ζ_2 (10 ⁻¹⁶ s ⁻¹)
HD 27778	0.65	7.5±4.3
HD 43384	0.41	2.5±1.6
HD 41117	0.53	4.9±3.2

June 26, 2014

Distribution of ζ_2

Limitations of H_3^+

- Absorption lines are weak, requiring high S/N and long observations
- More than half of all observations have resulted in non-detections
- Even with high S/N non-detections, most upper limits are near 10⁻¹⁶ s⁻¹
- Most suitable background sources (OB stars) are within about 2 kpc

- $H_2O^+ + H_2 \rightarrow H_3O^+ + H_3$
- $OH^+ + H_2 \rightarrow H_2O^+ + H$
- $O^+ + H_2 \rightarrow OH^+ + H$
- $H^+ + O \rightarrow O^+ + H$
- $CR + H \rightarrow H^+ + e^- + CR'$ •

 $PAH || e^{-H}$

• $OH^+ + e^- \rightarrow \text{products}$

|e-

 e^{-}

• $H_3O^+ + e^- \rightarrow \text{products}$

 $H^+ + PAH \rightarrow PAH^+$

- $O^+ + H \rightarrow H^+ + O$
- $H^+ + e^- \rightarrow H + h\nu$

Oxygen Chemistry

e⁻

 $\xrightarrow{CR} H^+ \xrightarrow{O} O^+ \xrightarrow{H_2} OH^+ \xrightarrow{H_2} H_2O^+$

OH⁺ Transitions

H₂O⁺ Transitions

Instrument & Telescope

Herschel Space Observatory

Herschel Observations

- 20 Galactic sight lines surveyed in multiple *Herschel* programs in both OH⁺ and H₂O⁺
- Observations probe gas up to 11 kpc distant
- Roughly 100 separate components where ionization rate can be determined

H₂ Fraction & Ionization Rate

 $n(OH^{+})n(H_{2})k(OH^{+}|H_{2}) = n(H_{2}O^{+})[n(H_{2})k(H_{2}O^{+}|H_{2}) + n_{e}k(H_{2}O^{+}|e^{-})]$

$$f_{\rm H_2} = \frac{2x_e k({\rm H_2O^+}|e^-)/k({\rm OH^+}|{\rm H_2})}{N({\rm OH^+})/N({\rm H_2O^+}) - k({\rm H_2O^+}|{\rm H_2})/k({\rm OH^+}|{\rm H_2})}$$

$$CR + H \qquad OH^+ + H_2 \qquad OH^+ + e^-$$

$$E\zeta_{\rm H} n({\rm H}) = n({\rm OH^+})[n({\rm H_2})k({\rm OH^+}|{\rm H_2}) + n_e k({\rm OH^+}|e^-)]$$

$$\epsilon\zeta_{\rm H} = \frac{N({\rm OH^+})}{N({\rm H})}n_{\rm H} \left[\frac{f_{\rm H_2}}{2}k({\rm OH^+}|{\rm H_2}) + x_e k({\rm OH^+}|e^-)\right]$$

June 26, 2014

Example OH^+ & H_2O^+ Observations

Example OH^+ & H_2O^+ Observations

June 26, 2014

Example OH⁺ & H₂O⁺ Analysis

G034.3+00.15

v _{LSR} (km/s)	N(OH ⁺) (10 ¹³ cm ⁻²)	$N(H_2O^+)$ (10 ¹³ cm ⁻²)	N(H) (10 ²¹ cm ⁻²)	<i>f</i> (H ₂)	$\zeta_{\rm H} \ (10^{-16} { m s}^{-1})$
[-12, 7]	2.5	0.26	1.3	0.03	2.1
[7, 18]	3.0	0.67	2.1	0.06	2.8
[18, 36]	2.7	0.31	>3.6	0.03	<0.9
[36, 44]	1.7	0.21	2.4	0.03	0.9
[44, 52]	3.7	0.93	3.6	0.07	2.2
[52, 70]	4.2	1.2	>5.2	0.08	<2.0

Indriolo et al. 2014 (in preparation)

Distribution of $\zeta_{\rm H}$

- Gas associated with background sources is shown in red
- $\zeta_{\rm H}$ >10⁻¹⁵ s⁻¹ is from gas in Galactic center region
- Mean ionization rate of atomic H is about 2×10⁻¹⁶ s⁻¹
- Good agreement between analysis using OH⁺ & H₂O⁺ and that using H₃⁺

• Limits of analytical expressions become apparent as chemical complexity increases

Chemical Models

 Chemical diversity in dense molecular clouds requires the use of complex reaction networks

– UDfA: 6173 reactions; 467 species – OSU: 6046 reactions; 468 species

- Specific applications call for inclusion of more effects/parameters
 - Grain/surface chemistry; time dependence; radiative transfer; density/temperature profile; shocks/turbulence

Deuterium Analysis

- Species observed in dense cores
 - DCO⁺ *J*=1-0 at 72.04 GHz
 - H¹³CO⁺ *J*=1-0 at 86.75 GHz
 - C¹⁸O *J*=1-0 at 109.78 GHz
- Caselli et al. 1998 ApJ, 499, 234
 - $R_{\rm H} = n({\rm HCO^+})/n({\rm CO})$
 - $R_D = n(DCO^+)/n(HCO^+)$
- Observed ratios are used in tandem with model results to constrain electron abundance and cosmic-ray ionization rate
- Similar analysis used in gas near W51C; Ceccarelli et al. 2011 ApJL, 740, L4

Dense Cloud Ionization Rates

- Wide spread of dense cloud ionization rates
- Tend to be lower than found in diffuse molecular and atomic clouds
- Low-energy particles are lost in outer layers of cloud, and do not penetrate the dense interiors

Argon Chemistry

- Formation
 - $CR + Ar \rightarrow Ar^+ + e^- + CR'$
 - $\operatorname{Ar}^{+} + \operatorname{H}_{2} \rightarrow \operatorname{Ar} \operatorname{H}^{+} + \operatorname{H}$

- Destruction
 - $\operatorname{Ar} H^+ + h\nu \rightarrow \operatorname{Ar}^+ + H$
 - $ArH^+ + O \rightarrow OH^+ + Ar$
 - $ArH^+ + H_2 \rightarrow H_3^+ + Ar$

Argonium (ArH⁺) Observations

- *J*=1-0 transition of ³⁶ArH⁺ at 617.525 GHz
- Identified in emission in Crab SNR (Barlow et al. 2013, Science, 342, 1343)
- Matched unidentified absorption line found in Galactic sight lines
- Better tracer of "pure" atomic gas than H I
- Formation relies on CR ionization of Ar

Schilke et al. 2014 A&A, 566, A29

Utility of Various Molecules

- In diffuse purely atomic (*f*(H₂)<10⁻⁴) gas, ArH⁺ may act as a tracer of the rate at which Ar is ionized by cosmic rays.
- In diffuse mostly atomic (*f*(H₂)<0.1) gas, OH⁺ and H₂O⁺ constrain the ionization rate of atomic H
- In diffuse molecular clouds, H₃⁺ traces the cosmic-ray ionization rate of H₂
- In dense molecular clouds, HCO⁺ and DCO⁺ abundances constrain the ionization rate of H₂

Summary of Ionization Rates

Regional Ionization Rates

- How does the cosmic-ray ionization rate change throughout the Galaxy?
- Multiple concentrated regions have been targeted in H₃⁺ including
 - Sco-Oph: *d*~100 pc
 - Per OB2: *d*~250 pc
 - IC 443: *d*~1.5 kpc
 - Galactic center: *d*~8.3 kpc

Fermi-LAT Year 5 All Sky Map

Image Credit: NASA, DOE, Fermi-LAT Collaboration

June 26, 2014

Sco-Oph Region

- No detection of H₃⁺ in currently observed sight lines
- Continuum level S/N approaching 1000 in multiple spectra
- 3σ upper limits: $0.3 \times 10^{-16} \text{ s}^{-1} < \zeta_2 < 2 \times 10^{-16} \text{ s}^{-1}$
- Consistent with ionization rates inferred from local interstellar proton spectrum

Per OB2 Region

IC 443 Survey

Galactic Center

Consistent with high ionization rates inferred from OH⁺ and H₂O⁺ abundances

June 26, 2014

Summary of Ionization Rates

Key Points

- Observations of molecular ions yield a mean cosmic-ray ionization rate of a few times 10⁻¹⁶ s⁻¹ in diffuse clouds
- The distribution of ionization rates ranges from about 10⁻¹⁷ s⁻¹ to 10⁻¹⁵ s⁻¹
- Cosmic-ray flux appears to vary on length scales of about 10 pc
- SNRs show enhanced ionization rates
- Different molecules will allow us to track the cosmic-ray flux across many environments

Future Prospects

- Expand survey of HCO⁺ and DCO⁺ in dense cores to improve sample
- Mine *Herschel* archive for ArH⁺ coverage to study diffuse, neutral, atomic gas
- Target molecular ions in more supernova remnants (e.g., RX J1713.7)
- Combine with gamma-ray analysis to constrain particle spectrum