Polarized thermal emission of Galactic dust, as seen by *Planck*

Copyright ESA and the Planck Collaboration

E. Falgarone (LERMA - ENS Paris et Observatoire de Paris) on behalf of the *Planck* collaboration

The Planck mission

- 2009-2012 space mission
- 9 bands 30 GHz to 857 GHz, 7 bands polarization sensitive
- Measurement of CMB anisotropies
- Mapping of the cold, dusty Milky Way
- Polarization : Galactic dust, primordial gravitational waves

The first Planck papers on polarization

Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust Planck Collaboration arXiv:astro-ph 1405.0871

Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence Planck Collaboration arXiv:astro-ph 1405.0872

Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with optical interstellar polarization Planck Collaboration arXiv:astro-ph 1405.0873

Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization Planck Collaboration arXiv:astro-ph 1405.0874

Submitted to A&A April 28 Published on arXiv May 5

Data to be released in the fall

Outline

- Results from Galactic dust polarized emission observed by *Planck*
- Comparison with numerical simulations of compressible MHD turbulence
- Comparison with numerical simulations of incompressible MHD and AD-MHD turbulence

Polarized thermal emission from dust

Aspherical dust grains : Emissivities larger along long axis

Rotating dust grains : Angular momentum L aligns with B

Polarized thermal dust emission gives information on :

- Dust optical properties and composition
- Magnetic field topology

Stein 1966, Andersson 2012, Draine & Fraisse 2009, Hoang & Lazarian 2008, Martin 1975, 2007

Polarized intensity and polarization fraction at 353 GHz

$$P=\sqrt{Q^2+U^2}$$

$$p = P/I$$

- Low polarization fractions in the Galactic Plane
- Some highly polarized regions (Fan/Auriga, Aquila Rift,...)
- Thin filamentary regions of low polarization

Maximum polarization fraction

▷ Intrinsic polarization fraction of dust at least 20%

Polarization fraction versus column density

Polarized dust emission in nearby clouds

Orientation of the POS magnetic field

Polarization angle ordered over large areas
 Sharp variations along filamentary structures
 not associated with filaments of matter

Aquila Rift

353 GHz intensity (left) and polarization fraction (right) + orientation of B in the plane-of-the-sky

R Corona Australis

353 GHz intensity (left) and polarization fraction (right) + orientation of B in the plane-of-the-sky

Anticorrelation with polarization fraction

- Strong anti-correlation between p and $\Delta \psi$
- Low p where the polarization angle changes abruptly
- Increased lag flattens the anti-correlation

Numerical Simulations : (I) Compressible bi-phasic MHD turbulence

- Converging flows of warm neutral medium
- Anisotropy of B
- Adaptive Mesh Refinement

Hennebelle + 2008

Rotation of the anisotropic cube

Simulating polarized dust emission

18 pc subset of a 50 pc cube
Converging flows of magnetized warm gas (WNM)

- Mean magnetic field along the flows
- Rotation of the cube, placed at 200 pc
- Simulated Stokes maps smoothed at 5'

$$I = \int S_{\nu} e^{-\tau_{\nu}} \left[1 - p_0 \left(\cos^2 \gamma - \frac{2}{3} \right) \right] d\tau_{\nu}$$
$$Q = \int p_0 S_{\nu} e^{-\tau_{\nu}} \cos \left(2\phi \right) \cos^2 \gamma d\tau_{\nu}$$
$$U = \int p_0 S_{\nu} e^{-\tau_{\nu}} \sin \left(2\phi \right) \cos^2 \gamma d\tau_{\nu}$$

« Intrinsic dust polarization parameter » $p_0=0.2$

Opacity at 353 GHz (Planck Collaboration XXXI, 2014) $au_{353}/N_{
m H}=1.2 imes10^{-26}\,{
m cm}^{-2}$

Dust temperature

$$T_d = 18 \,\mathrm{K}$$

Planck intermediate results. XX.

Following Lee & Draine 85 and others...

Simulated polarization maps

22.4

22.0

21.6

20.4

20.0

19.6

Nн

 $\log(N_{\rm H}/{
m cm^{-2}})$

l [°]

-2

Simulated polarization maps

Anti-correlation p_{max} and $N_{\rm H}$ Anti-correlation p_{max} and $\Delta \psi$ Overall lower polarization fractions

Polarization fraction versus column density

Simulations reproduce very well the decrease of p_{max} with $N_{\rm H}$ in the range 10²¹ to a few 10²² cm⁻²

Polarization fraction and angle dispersion

Global trend is reproduced, but simulations tend to have too high an angular dispersion

Numerical simulations: (II) Non-ideal incompressible turbulence

Ohmic dissipation: $D_{ohm} = \eta j^2$ Viscous dissipation: $D_{visc} = v\omega^2$ Dissipation by ion-neutral drift (ambipolar diffusion): $D_{AD} = \alpha(j \times B)^2$

Slice in 512³ spectral NS, Momferratos et al 2014 MNRAS

Intermittency of dissipation : ohmic, viscous and ambipolar diffusion

The 10% most dissipative events contribute to 30% of total dissipation

Structure of dissipation rate extremum

Momferratos et al. 2014

Energy spectra of j x B

ambipolar diffusion
 generates force-free field
 at small scales

Comparison with observables

⇔ Vorticity POS projection and B_{POS}

Increments of polarization orientation

In summary

- Large fluctuations of the dust polarization fraction p for $\rm N_{H}$ < a few 10^{22} cm^{-2}
- High $p_{max} \Rightarrow$ high intrinsic polarization of dust > 20%
- Systematic decrease of p_{max} with N_H
 ⇒ fluctuations of the magnetic field orientation
 ⇒ loss of radiative grain alignment N_H > a few 10²² cm⁻²
- \bullet Polarization angle ψ ordered over large areas
- Sharp variations of $\psi \, \, \diamondsuit \,$ filamentary structures, not filaments of matter
- \bullet Anti-correlation of ψ dispersion and p
- Anisotropic simulations of MHD compressible turbulence : reproduce major trends, stress role of large scale field
- \bullet AD-MHD incompressible turbulence : largest variations of ψ on most intense shears and currents