Wide-Field Polarimetry: A Unique Probe of Interstellar Turbulence

Bryan Gaensler

The University of Sydney

with M. Haverkorn, <u>B. Burkhart</u>, <u>C. Herron</u>, <u>M. Iacobelli</u>, <u>K. Newton-McGee</u>, <u>E. Petroff</u>, X. Sun, J. Geisbuesch, R. Ekers, E. Lenc, N. McClure-Griffiths, E. Carretti, C. Purcell, A. Lazarian, L. Staveley-Smith, M. Kesteven, S. Poppi, G. Bernardi, T. Robishaw, T. Landecker, R. Kothes, J. Dickey & A. Green

🍠 @SciBry

#CRISM2014

Haverkorn & Heitsch (2004)

THE UNIVERSITY OF

Faraday Rotation

The Polarisation Gradient

PioleaisSysticuthay is a clicated in the clicated and t

Snakes in the Plane

- Mottled morphology of *P* ≡ Q + iU due to fluctuations in foreground RM as function of sky position
- Structures that induce these fluctuations can be revealed through gradient of linear polarisation:

$$\left|\nabla P\right| = \sqrt{\left(\frac{\partial Q}{\partial x}\right)^2 + \left(\frac{\partial Q}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2}$$

- cusps/jumps in foreground electron density or magnetic field
- Similar structures seen in simulations; produced by shocks, vortices, shear (Burkhart, Lazarian & Gaensler 2012; lacobelli, Gaensler et al. 2014)
 - direct visualisation of interstellar turbulence

 $|\nabla P|$ for MHD simulations and observations (Haverkorn & Heitsch 2004; Gaensler et al. 2011)

Are We Sure It's Turbulence?

For P = Q + iU and p = |P|, compute structure functions:

 $\mathsf{SF}_{\boldsymbol{P}}(\mathsf{d} \mathsf{x}) \equiv \langle |\boldsymbol{P}(\mathsf{x}) - \boldsymbol{P}(\mathsf{x} + \mathsf{d} \mathsf{x})|^2 \rangle \qquad \mathsf{SF}_{\boldsymbol{\mathcal{P}}}(\mathsf{d} \mathsf{x}) \equiv \langle |\boldsymbol{\mathcal{P}}(\mathsf{x}) - \boldsymbol{\mathcal{P}}(\mathsf{x} + \mathsf{d} \mathsf{x})|^2 \rangle$

- for intrinsic polarisation, no correlation between intensity and angle
 - \rightarrow SF_P(dx) and SF_p(dx) should be power laws with same slopes
- for Faraday rotation, anti-correlation between angle fluctuations and intensity \rightarrow SF_P(dx) and SF_p(dx) should be power laws with different slopes

Quantitative Investigations

Gaensler et al. (2011)

Wide-Field Polarimetry

2.4 GHz all-sky polarisation gradient (lacobelli, Gaensler et al. 2014)

Wide-Field Polarimetry

2.4 GHz polarisation gradient (lacobelli, Gaensler et al. 2014) supersonic? 10⁶ Skewness $|b| \in [2.5, 15]$ Kurtosis $|b| \in [15, 30]$ 10⁵ $|b| \in [30, 45]$ $|b| \in [45, 60]$ 10^1 10^{4} h2 Skewness, Kurtosis 10³ Counts 102 10^{1} 10^{0} 10⁰ subsonic/ transonic 10⁻¹ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10^1 10² 10³ 10^4 10 20 30 40 50 60 70 0 80 $|\nabla P|/|P|$ [beam^{-0.5}] |b| [deg]

Conclusions

- Galaxy is suffused with ∇P filaments
 - loci of cusps & edges in foreground n_e or B
 - stochastic network of turbulence & shocks
 - morphology & moments \rightarrow sonic Mach number
- > Work in progress:
 - frequency-dependence of ∇P (Purcell +2014)
 - comparison of $\nabla P \& \nabla RM$ (Geisbuesch+ 2014)
 - additional geometric diagnostics (Herron+ 2014)
 - low frequencies \rightarrow local structure (Lenc+ 2014)
- Gradient of polarisation can:
 - directly visualise turbulence in diffuse gas
 - give quantitative info on turbulent parameters

