Compressive Source Separation

Mohammad Golbabaee

Simon Arberet

Pierre Vandergheynst

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Motivation: MALDI Imaging

Molecular Mass Spectroscopy

Matrix-assisted laser desorption/ionization

Very high-dimensional: 3D X spectra !

Motivation: Hyperspectral Imaging

High-Dimensional Multichannel Data

$X \in \mathbb{R}^{n_1 \times n_2}$

Often very structured: spatial, spectral

$X = \mathbf{S}\mathbf{H}^T$

$X = \mathbf{SH}^T$

$X = \mathbf{S}\mathbf{H}^T$

$X = \mathbf{SH}^T$

$X = \mathbf{\Psi} \Theta \mathbf{H}^T$

$Y = \mathbf{A}(X)$

$Y = \mathbf{A}(\mathbf{SH}^T)$

$Y = \mathbf{A}(\mathbf{\Psi} \Theta \mathbf{H}^T)$

$Y = \mathbf{A}(\mathbf{\Psi} \Theta \mathbf{H}^T)$

Questions:

- How many projections ?
- Design of **A**?

Outline

- 2 Problems
 - Sparse regression = dictionary of spectra known
 - Is it interesting in some applications ?
 - Can we use this information? Obtain theoretical guarantees ?
 - Sparse coding = blind: learn spectra and abundances
- CS: observe projections to low dimension
 - can we directly recover model parameters ?
 - can we use knowledge of spectra

Baseline: no structure $X \in \mathbb{R}^{n_1 \times n_2}$ $X_{vec} \in \mathbb{R}^{n_1 n_2}$

$$AX_{vec} := \mathcal{A}(X) \qquad y = AX_{vec} + z \qquad A \in \mathbb{R}^{m \times n_1 n_2}$$

$$\arg\min_{X_{vec}} \|X_{vec}\|_1 \quad s.t. \quad \|y - AX_{vec}\|_2 \le \varepsilon$$

Recovery for $K(\ll n_1n_2)$ -sparse signals when $m = \mathcal{O}(K \log(n_1n_2/K))$

[Donoho, Candès-Romberg, Tao]

Typically impose spatial structure on sparsity model

Typically impose spatial structure on sparsity model

Via the dictionary: $\Psi = \mathbb{I}_{n_2} \otimes \Psi_{2D}$ $\arg\min_{\Theta_{vec}} \|\Theta_{vec}\|_1 \quad s.t. \quad \|y - A\Psi\Theta_{vec}\|_2 \le \varepsilon,$

Typically impose spatial structure on sparsity model

Via the dictionary:
$$\Psi = \mathbb{I}_{n_2} \otimes \Psi_{2D}$$

 $\arg\min_{\Theta_{vec}} \|\Theta_{vec}\|_1 \quad s.t. \quad \|y - A\Psi\Theta_{vec}\|_2 \le \varepsilon,$

k sparse per channel and RIP holds $m \ge c n_2 k \log(n_1/k)$

Typically impose spatial structure on sparsity model

Via the dictionary: $\Psi = \mathbb{I}_{n_2} \otimes \Psi_{2D}$ $\arg\min_{\Theta_{vec}} \|\Theta_{vec}\|_1 \quad s.t. \quad \|y - A\Psi\Theta_{vec}\|_2 \le \varepsilon,$

k sparse per channel and RIP holds $m \ge c n_2 k \log(n_1/k)$

Typically impose spatial structure on sparsity model

Via the dictionary: $\Psi = \mathbb{I}_{n_2} \otimes \Psi_{2D}$ $\arg\min_{\Theta_{vec}} \|\Theta_{vec}\|_1 \quad s.t. \quad \|y - A\Psi\Theta_{vec}\|_2 \le \varepsilon,$

k sparse per channel and RIP holds $m \ge c n_2 k \log(n_1/k)$

Not exploiting spectral redundancies

Via other (block structured) sparsity penalties ?

More structure ?

[MMV, Davies-Eldar]

The Linear Mixture Case

 $X = \mathbf{S}\mathbf{H}^T \qquad \mathbf{S} \in \mathbb{R}^{n_1 \times \rho} \qquad \text{Spatial abundance maps} \\ \mathbf{H} \in \mathbb{R}^{n_2 \times \rho} \qquad \text{Spectra or endmembers} \end{cases}$

Each channel is a mixture

$$X_j = \sum_{i=1}^{\rho} [\mathbf{H}]_{j,i} \, \mathbf{S}_i$$

Typically the number of endmembers is very small compared to the spatial and spectral dimensions

$$\rho << n_1, \, \rho << n_2$$

Assume we have a dictionary of spectra/endmembers

$$\Phi = \mathbf{H} \otimes \mathrm{Id}_{n_1} \qquad \qquad y = A \Phi \mathbf{S}_{vec} + z$$

Assume we have a dictionary of spectra/endmembers

Assume we have a dictionary of spectra/endmembers

$$\mathbf{S}_{vec} = \mathbf{\Psi} \mathbf{\Theta}_{vec}$$

Assume we have a dictionary of spectra/endmembers

 $\Phi = \mathbf{H} \otimes \mathrm{Id}_{n_1} \qquad y = A \Phi \mathbf{S}_{vec} + z$ New sensing operator $\mathbf{S}_{vec} = \Psi \Theta_{vec} \longrightarrow \text{directly recover abundances}$

Assume we have a dictionary of spectra/endmembers

 $\Phi = \mathbf{H} \otimes \operatorname{Id}_{n_{1}} \qquad y = A \Phi \mathbf{S}_{vec} + z$ New sensing operator $\mathbf{S}_{vec} = \Psi \Theta_{vec} \longrightarrow \text{ directly recover abundances}$ $\operatorname{arg\,min}_{\Theta_{vec}} \| \Theta_{vec} \|_{1} \quad \text{s.t.} \quad \| y - A \Phi \Psi \Theta_{vec} \|_{2} \leq \varepsilon$

How do we choose A ? Influence of H ? How can we use the knowledge of H ?

Our problem is of the form:

$$\underset{\theta}{\arg\min} \|\theta\|_{1} \quad s.t. \quad \|y - A\mathbf{D}\theta\|_{2} \leq \varepsilon$$
Compressive Sensing with a coherent dictionary D

But ...

Our problem is of the form:

$$\underset{\theta}{\arg\min} \|\theta\|_1 \quad s.t. \quad \|y - A\mathbf{D}\theta\|_2 \le \varepsilon$$

Compressive Sensing with a coherent dictionary ${\cal D}$

But ...

RIP on $A\mathbf{D}$ will impose very strong restrictions on the underlying \mathbf{H} : (recall $\mathbf{D} = (\mathbf{H} \otimes \mathrm{Id}_{n_1}) \Psi$)

Our problem is of the form:

$$\begin{array}{ll} \arg\min_{\theta} \|\theta\|_{1} \quad s.t. \quad \|y - A\mathbf{D}\theta\|_{2} \leq \varepsilon \\ & \quad \text{Compressive Sensing with a coherent dictionary } D \\ \text{But } \dots \end{array}$$

RIP on $A\mathbf{D}$ will impose very strong restrictions on the underlying \mathbf{H} : (recall $\mathbf{D} = (\mathbf{H} \otimes \mathrm{Id}_{n_1}) \Psi$)

$$\delta_k(A\mathbf{D}) < \sqrt{2} - 1 \Longrightarrow \xi(\mathbf{H}) < \sqrt{\sqrt{2} + 1} \\ \xi(\mathbf{H}) = \frac{\sigma_{\max}(\mathbf{H})}{\sigma_{\min}(\mathbf{H})}$$

Instead analyze with D-RIP for the sensing matrix

Instead analyze with D-RIP for the sensing matrix $(1 - \delta_k^*) \|\mathbf{D}x\|_2^2 \le \|A\mathbf{D}x\|_2^2 \le (1 + \delta_k^*) \|\mathbf{D}x\|_2^2$

[Candès, Eldar, Needel, Randall]

Instead analyze with D-RIP for the sensing matrix $(1 - \delta_k^*) \|\mathbf{D}x\|_2^2 \le \|A\mathbf{D}x\|_2^2 \le (1 + \delta_k^*) \|\mathbf{D}x\|_2^2$

[Candès, Eldar, Needel, Randall]

If A satisfies the D-RIP for $\mathbf{H} \otimes \mathrm{Id}_{n_1}$ with constant:

$$\delta_{\gamma'k}^* < 1/3 \quad \text{where } \gamma' = 1 + 2\xi^2(\mathbf{H})$$

Then $\|\mathbf{\Theta}_{vec} - \widehat{\mathbf{\Theta}}_{vec}\|_2 \le c'_0 k^{-1/2} \|\mathbf{\Theta}_{vec} - (\mathbf{\Theta}_{vec})_k\|_1 + c'_1 \varepsilon$

Instead analyze with D-RIP for the sensing matrix $(1 - \delta_k^*) \|\mathbf{D}x\|_2^2 \le \|A\mathbf{D}x\|_2^2 \le (1 + \delta_k^*) \|\mathbf{D}x\|_2^2$

[Candès, Eldar, Needel, Randall]

If A satisfies the D-RIP for $\mathbf{H} \otimes \operatorname{Id}_{n_1}$ with constant: $\delta_{\gamma'k}^* < 1/3$ where $\gamma' = 1 + 2\xi^2(\mathbf{H})$ Then $\|\mathbf{\Theta}_{vec} - \widehat{\mathbf{\Theta}}_{vec}\|_2 \le c'_0 k^{-1/2} \|\mathbf{\Theta}_{vec} - (\mathbf{\Theta}_{vec})_k\|_1 + c'_1 \varepsilon$ Note that: $\gamma'k < n_1 n_2 \Rightarrow \xi(\mathbf{H}) \le \sqrt{\frac{n_1 n_2/k - 1}{2}}$

Trivial Sampling Operators

"Decorrelation" sampling: $A = \mathbf{H}^{\dagger} \otimes \widetilde{A}$ $y = A \Phi \mathbf{S}_{vec} + z$ $-(\mathbf{H}^{\dagger} \otimes \widetilde{A})(\mathbf{H} \otimes \mathrm{Id}) \mathbf{S} + z$

$$= \underbrace{(\mathbf{H}^{\dagger} \otimes \widetilde{A})}_{A} \underbrace{(\mathbf{H} \otimes \mathrm{Id}_{n_{1}})}_{\Phi} \mathbf{S}_{vec} + z,$$
$$= \underbrace{(\mathrm{Id}_{\rho} \otimes \widetilde{A})}_{\triangleq \widetilde{A}_{\rho}} \mathbf{S}_{vec} + z.$$

The analysis is then standard since ${\bf H}$ has disappeared

Constants will not depend on H, but effect on noise.

With "decorrelation" sampling, the effect of

firsr case: n2 n1 matrix with sparsity k on spatial dimension

second case: mixture model: reduces sparsity by taking into account all channels and dense sampling uses it. But attention to constant

third case: each channel separately and each channel is k sparse, so roughly kn2 sparse

fourth case: mixture model reduces sparsity, decorrelation step removes effect of H.

Full problem incorporates more constrains:

Full problem incorporates more constrains:

$$\sum_{j=1}^{\rho} [\mathbf{S}]_{i,j} = 1 \qquad \forall i \in \{1, \dots, n_1\} \qquad [\mathbf{S}]_{i,j} \ge 0$$

Full problem incorporates more constrains:

$$\sum_{j=1}^{\rho} [\mathbf{S}]_{i,j} = 1 \quad \forall i \in \{1, \dots, n_1\} \quad [\mathbf{S}]_{i,j} \ge 0$$

arg min
 $\mathbf{\Theta} \quad \|\mathbf{\Theta}_{vec}\|_1$
subject to
 $\|y - A \mathbf{\Phi} \mathbf{\Psi} \mathbf{\Theta}_{vec}\|_2 \le \varepsilon$
 $\Psi_{2D} \mathbf{\Theta} \, \mathbb{I}_{\rho} = \mathbb{I}_{n_1}$
 $\mathbf{\Psi} \mathbf{\Theta}_{vec} \ge 0.$

Full problem incorporates more constrains:

 $\sum [\mathbf{S}]_{i,j} = 1 \qquad \forall i \in \{1, \dots, n_1\} \qquad [\mathbf{S}]_{i,j} \ge 0$ i=1 $\operatorname{arg\,min} \| \boldsymbol{\Theta}_{vec} \|_1$ (\mathbf{H}) subject to $\|y - A\Phi\Psi\Theta_{vec}\|_2 \leq \varepsilon$ $\Psi_{2\mathrm{D}} \Theta \mathbb{I}_{\rho} = \mathbb{I}_{n_1}$ $\Psi \Theta_{vec} > 0.$ $\arg \min f_1(\mathbf{S}) + f_2(\mathbf{S}) + f_3(\mathbf{S})$ S $f_1(\mathbf{S}) = \mathcal{P}(\mathbf{S}), f_2(\mathbf{S}) = i_{\mathcal{B}_2}(\mathbf{S}), f_3(\mathbf{S}) = i_{\mathcal{B}_{\Lambda+}}(\mathbf{S})$

Hyper Spectral Imaging

S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$

Hyper Spectral Imaging

S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$

A: Spectra (depending on modality) $\mathbf{A} \in \mathbb{R}^{n_2 \times \rho}$

Hyper Spectral Imaging

S: Sources (element abundancies) $\mathbf{S} \in \mathbb{R}^{n_1 \times \rho}$

A: Spectra (depending on modality) $\mathbf{A} \in \mathbb{R}^{n_2 \times \rho}$

Each pixel is a weighted combination of source spectra: $y = \mathbf{S}\mathbf{A}^T$

Some experiments

- We have implemented various problems
 - with/without linear mixture model
 - simple sparse wavelet model, TV
- We compared different algorithms
 - PPXA, a variant with IHT, ...
- We used several sensing matrices
 - dense, uniform, decorr, varied the core matrix (random conv, ...)
- We compared on various datasets
 - synthetic, real, CASSI ...

Results

(a) Reconstruction SNR vs. subsampling ratio (noiseless (b) Reconstruction SNR vs. sampling SNR (subsampling sampling)ratio:1/16)

Noise SNR	$+\infty$ dB				30 dB				10 dB			
Sampling rate	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32
SS-IHT(dense sampling)	0.69	0.61	0.57	0.48	0.71	0.6	0.57	0.48	0.7	0.6	0.57	0.48
SS-11(dense sampling)	1.0	1.0	0.95	0.81	1.0	1.0	0.95	0.8	1.0	0.98	0.91	0.73
SS-TV(dense sampling)	1.0	1.0	1.0	0.92	1.0	1.0	1.0	0.91	1.0	1.0	0.98	0.88
SS-IHT(uniform sampling)	0.43	0.38	0.31	0.25	0.43	0.37	0.31	0.26	0.43	0.37	0.3	0.26
SS-11(uniform sampling)	0.97	0.73	0.45	0.31	0.95	0.73	0.48	0.3	0.96	0.75	0.42	0.3
SS-TV(uniform sampling)	1.0	0.98	0.9	0.76	1.0	0.97	0.89	0.74	1.0	0.97	0.88	0.74
SS-IHT-decorr	0.98	0.98	0.96	0.94	0.99	0.98	0.96	0.94	0.98	0.97	0.95	0.92
SS-11-decorr	1.0	0.99	0.97	0.92	1.0	0.99	0.96	0.91	0.98	0.95	0.92	0.87
SS-TV-decorr	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.99	0.98	0.96

Results

Hyper-Spectral Imaging

(a) Ground truth

From 3% of the original data:

(e) SS-TV-decorr, source reconstruction SNR: 8.64 dB

Classification performances

Mixture not exactly linear: 28% discrepancy among pixels of same class

(a) Pavia scene

(b) Ground truth

(c) SS-TV-decorr

 $>\!\!90\%$ accuracy with compression 1/32

MALDI Imaging

Molecular Mass Spectroscopy

Matrix-assisted laser desorption/ionization

Very high-dimensional: 3D X spectra !

- Baseline removal
- Pre-process spectra (peak picking)
- Dimensionality reduction
- K-Means

- Baseline removal
- Pre-process spectra (peak picking)
- Dimensionality reduction
- K-Means

- Baseline removal
- Pre-process spectra (peak picking)
- Dimensionality reduction
- K-Means

- Baseline-removal-
- Pre-process spectra (peak picking)
- Dimensionality reduction
- K-Means

- Baseline-removal-
- Pre-process spectra (peak picking)
- Dimensionality reduction
- K-Means

MALDI Imaging

Directly apply Compressive BSS Compression factor roughly 10

Baseline!

Outlook

- Significant challenges ahead in signal processing
 - Big Data
 - Ubiquitous but Cheap Sensing (i.e dirty signals)
- Sometimes, no need to reconstruct
 - clustering
 - classification
- Methods that would allow principled and guaranteed task-based processing very appealing

