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Motivation: MALDI Imaging
2

Molecular Mass Spectroscopy
Matrix-assisted laser desorption/ionization

Very high-dimensional: 3D X spectra !
Numerical experiments with MALDI Imaging data 3
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Fig. 1 An imaging mass spectrometry data set is a data cube: Full spectra (A) are measured at several
spatial points of a sample (B). Hence such imaging data can be viewed by either visualizing the individual
spectra for selected measurement points or on can view the intensity image for a selected mass, e.g. the
intensity image for m/z= 4966 Da resp. m/z= 6717 Da displayed in (C) resp. (D).

the full molecular spectrum and equivalently contains complete metabolic informa-
tion.

Over the last ten years mass spectrometry has developed from primarily analyzing
single spectra to an imaging technology (MALDI Imaging), which allows to obtain
also spatial information, see Figure 1. Several different approaches of obtaining the
mass spectra do exist. However, just a few can be applied to represent the data as
an image. In surface analysis, Secondary Ion Mass Spectrometry (SIMS) [2] is most
often used, but one cannot measure large molecules with this technique. Measuring
small and large molecules (e. g. metabolites, lipids, and proteins) is possible with
MALDI [15].

The MALDI mass spectra are generated by ionization of the molecules by a laser.
A chemical solution applied to the tissue prevents the molecules to break into frac-
tions and supports the ionization. The ionized molecules are accelerated by an elec-
trical field, gain kinetic energy and travel through a flight tube. During their time of
free flight in the tube, the molecules are separated by mass following the physical law
of preserving energy. At the end of the flight tube, a detector measures the number of
arriving material [4].

However, the raw data is not accessible directly for diagnosis. Features, such as
baselines, characteristic peaks and isotope patterns need to be extracted or marker
values for specific tasks have to be identified when analyzing MALDI Imaging data.
In MALDI Imaging (see Figure 1), where several thousands of spectra have to be
evaluated for a single experiment, automated methods for feature extraction are es-
sential [16].

A single mass spectrometry data set s(m/z) consists of two sequences of num-
bers which state mass-to-charge ratio (m/z) values and the corresponding intensities
(counts of molecules having the specified m/z value). In imaging mass spectrometry
such as e.g. MALDI Imaging typically several thousand mass spectra are measured
and evaluated in a single experiment. In this case, each spectrum is annotated with
the coordinates x = (x1,x2) of the measurement position, i.e. a MALDI Imaging data



Motivation: Hyperspectral Imaging
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X 2 Rn1⇥n2
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High-Dimensional Multichannel Data
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Numerical experiments with MALDI Imaging data 3
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Fig. 1 An imaging mass spectrometry data set is a data cube: Full spectra (A) are measured at several
spatial points of a sample (B). Hence such imaging data can be viewed by either visualizing the individual
spectra for selected measurement points or on can view the intensity image for a selected mass, e.g. the
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the full molecular spectrum and equivalently contains complete metabolic informa-
tion.

Over the last ten years mass spectrometry has developed from primarily analyzing
single spectra to an imaging technology (MALDI Imaging), which allows to obtain
also spatial information, see Figure 1. Several different approaches of obtaining the
mass spectra do exist. However, just a few can be applied to represent the data as
an image. In surface analysis, Secondary Ion Mass Spectrometry (SIMS) [2] is most
often used, but one cannot measure large molecules with this technique. Measuring
small and large molecules (e. g. metabolites, lipids, and proteins) is possible with
MALDI [15].

The MALDI mass spectra are generated by ionization of the molecules by a laser.
A chemical solution applied to the tissue prevents the molecules to break into frac-
tions and supports the ionization. The ionized molecules are accelerated by an elec-
trical field, gain kinetic energy and travel through a flight tube. During their time of
free flight in the tube, the molecules are separated by mass following the physical law
of preserving energy. At the end of the flight tube, a detector measures the number of
arriving material [4].

However, the raw data is not accessible directly for diagnosis. Features, such as
baselines, characteristic peaks and isotope patterns need to be extracted or marker
values for specific tasks have to be identified when analyzing MALDI Imaging data.
In MALDI Imaging (see Figure 1), where several thousands of spectra have to be
evaluated for a single experiment, automated methods for feature extraction are es-
sential [16].

A single mass spectrometry data set s(m/z) consists of two sequences of num-
bers which state mass-to-charge ratio (m/z) values and the corresponding intensities
(counts of molecules having the specified m/z value). In imaging mass spectrometry
such as e.g. MALDI Imaging typically several thousand mass spectra are measured
and evaluated in a single experiment. In this case, each spectrum is annotated with
the coordinates x = (x1,x2) of the measurement position, i.e. a MALDI Imaging data

Often very structured: spatial, spectral
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Very special structure: (linear) mixture model
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Maps to low-dimensional projections
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Y = A( ⇥HT )

7

Maps to low-dimensional projections

Questions: 
- How many projections ?
- Design of A?



Outline

l 2 Problems
- Sparse regression = dictionary of spectra known 

l Is it interesting in some applications ?
l Can we use this information? Obtain theoretical guarantees ?

- Sparse coding = blind: learn spectra and abundances
l CS: observe projections to low dimension
- can we directly recover model parameters ?
- can we use knowledge of spectra

8



X 2 Rn1⇥n2

AXvec := A(X) A 2 Rm⇥n1n2

Xvec 2 Rn1n2

y = AXvec + z

Recovery for K(⌧ n1n2)-sparse signals when m = O(K log(n1n2/K))

CS of Multichannel Signals
9

arg min
Xvec

kXveck1 s.t. ky �AXveck2  "

Baseline: no structure

[Donoho, Candès-Romberg, Tao]
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CS of Multichannel Signals
10

Typically impose spatial structure on sparsity model

 = In2 ⌦ 2DVia the dictionary:
argmin

⇥vec

k⇥veck1 s.t. ky �A ⇥veck2  ",

m � c n2k log(n1/k)k sparse per channel and RIP holds

Via other (block structured) sparsity penalties ? 

More structure ?

Not exploiting spectral redundancies

[MMV, Davies-Eldar]



X = SHT S 2 Rn1⇥⇢

H 2 Rn2⇥⇢

Xj =
⇢X

i=1

[H]j,i Si

⇢ << n1, ⇢ << n2

The Linear Mixture Case
11

Spatial abundance maps

Spectra or endmembers

Typically the number of endmembers is very small compared to the 
spatial and spectral dimensions

Each channel is a mixture
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Assume we have a dictionary of spectra/endmembers

New sensing operator

argmin
⇥vec

k⇥veck1 s.t. ky �A� ⇥veck2  "

How do we choose A ? Influence of H ?
How can we use the knowledge of H ?

directly recover abundances
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Fundamental Limits - 1
13

Our problem is of the form:

Compressive Sensing with a coherent dictionary D

But ...

⇠(H) =
�
max

(H)

�
min

(H)

⇠(H) <

qp
2 + 1�k(AD) <

p
2� 1

RIP on AD will impose very strong restrictions on the 
underlying H: (recall                          )D = (H⌦ Idn1) 
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14

Instead analyze with D-RIP for the sensing matrix
(1� �

⇤
k)kDxk22  kADxk22  (1 + �

⇤
k)kDxk22

[Candès, Eldar, Needel, Randall]
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If A satisfies the D-RIP for              with constant:

k⇥vec � b⇥veck2  c00 k
�1/2k⇥vec � (⇥vec)kk1 + c01"Then

⇠(H) 
r

n1n2/k � 1

2
�0k < n1n2 )Note that:

(1� �

⇤
k)kDxk22  kADxk22  (1 + �

⇤
k)kDxk22

[Candès, Eldar, Needel, Randall]



A = H† ⌦ eA
bm⇥ n1 with bm ⌧ n1

y = A�Svec + z

= (H† ⌦ eA)| {z }
A

(H⌦ Idn1)| {z }
�

Svec + z,

= (Id⇢ ⌦ eA)
| {z }

, eA⇢

Svec + z.

Trivial Sampling Operators
15

“Decorrelation” sampling:

The analysis is then standard since H has disappeared

Constants will not depend on H, but effect on noise.



Fundamental Limits - 3
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CS Acquisition Scheme Dense Dense Uniform Decorrelating
CS Recovery Approach BPDN SS-`1 SS-`1 SS-`1
CS measurements m & O

⇣
n2k log(n1/k)

⌘
O
⇣
k log(⇢n1/k)

⌘
O
⇣
n2k log(n1/k)

⌘
O
⇣
k log(⇢n1/k)

⌘

Constant depends on H - Yes Yes No

TABLE I: Measurement bounds for random sampling schemes: dense, uniform and decorrelating, and

for recovery approaches: BPDN and SS-`
1

(i.e. source separation based recovery using (10) or (17)). The

last row shows if the bounds for the SS-`
1

are sensitive to the conditioning of the mixing matrix H.

A satisfies the RIP:

bm � c k log(n

1

/k).

Unlike the previous measurement bounds for the non-decorrelating sampling schemes, here c is a fixed

constant independent of the mixture matrix H. Consequently, the total number of CS measurements used

for source recovery is:

m � c ⇢ k log(n

1

/k)). (38)

Note that, for a noiseless sampling scenario (" = 0) the minimization (17) can be decoupled into ⇢

independent `
1

minimizations, each of them corresponding to a sparse recovery of a certain source. Now,

if we assume that each source has exactly k

0
= k/⇢ nonzero coefficients, then a perfect recovery can

be guaranteed as long as �

k

0
(

e
A)  p

2� 1 which, for a matrix e
A drawn form the previously-mentioned

distributions, implies that bm � c k

0
log(n

1

/k

0
) and consequently:

m = ⇢bm � c k log(⇢n

1

/k). (39)

Comparing to (38) where m is roughly proportional to ⇢k, here the measurement bound improves by

a factor ⇢ and it is mainly proportional to the sparsity level k of all sources.

D. Conclusions on the Theoretical Bounds

Consider a multichannel data derived by the linear mixture (7) of ⇢ sources, each having a k

0-

sparse representation i.e. S is k = ⇢k

0 sparse. Table I summarizes the scaling-orders of the number

of CS measurements sufficient for an exact data reconstruction for different noiseless random acquisition

schemes and sparse recovery approaches. As we can observe, compressed sensing via source recovery

using (10) once it is coupled with a proper CS acquisition (i.e., Dense i.i.d. subgaussian A, or a random

decorrelating sampling scheme as in sections III-B1 and III-B3) leads to a significantly improved bound
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no mixing structure
effect of H

With “decorrelation” sampling, the effect of H disappears

firsr case: n2 n1 matrix with sparsity k on spatial 
dimension

second case: mixture model: reduces sparsity by taking 
into account all channels and dense sampling uses it. 
But attention to constant

third case: each channel separately and each channel 
is k sparse, so roughly kn2 sparse

fourth case: mixture model reduces sparsity, 
decorrelation step removes effect of H.
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⇢X

j=1

[S]i,j = 1 8i 2 {1, . . . , n1} [S]i,j � 0

argmin

⇥
k⇥veck1

subject to ky �A� ⇥veck2  "

 2D⇥ I⇢ = In1

 ⇥vec � 0.

argmin
S

f1(S) + f2(S) + f3(S)

f1(S) = P(S), f2(S) = iB2(S), f3(S) = iB�+(S)

Applications
17

Full problem incorporates more constrains:
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S 2 Rn1⇥⇢S: Sources (element abundancies)  

Hyper Spectral Imaging
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y = SATEach pixel is a weighted combination of source spectra:

Hyper Spectral Imaging



Some experiments

l We have implemented various problems
- with/without linear mixture model
- simple sparse wavelet model, TV

l We compared different algorithms
- PPXA, a variant with IHT, ...

l We used several sensing matrices
- dense, uniform, decorr, varied the core matrix (random conv, ...)

l We compared on various datasets
-  synthetic, real, CASSI ...

19
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TABLE II: Description of the proposed SS methods.

Method name Description
SS-IHT Problem (47) solved with Algorithm 2 with gradient rF (⇥) of Eq. (48).

SS-l1
Problem (42) solved with Algorithm 1, with P(S) = k ⇤Sveck1 and prox↵f2

(·) computed using a

forward-backward scheme as proposed in [24].

SS-TV
Problem (42) solved with Algorithm 1, with P(S) =

P⇢
j=1

kSjkTV and prox↵f2
(·) computed using

a forward-backward scheme as proposed in [24].

SS-IHT-decorr Problem (47) solved with Algorithm 2 with gradient rF (⇥) of Eq. (49).

SS-l1-decorr
Problem (42) solved with Algorithm 1, with P(S) = k ⇤Sveck1, and prox↵f2

(·) computed with the

closed form Eq. (46).

SS-TV-decorr
Problem (42) solved with Algorithm 1, with P(S) =

P⇢
j=1

kSjkTV and prox↵f2
(·) computed with

(46).

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

5

10

15

20

25

30

35

40

Subsampling ratio (m/n1n2)

R
ec

on
st

ru
ct

io
n 

SN
R

 (d
B)

 

 

TVDN (dense)
BPDN (dense)
SS−TV (dense)
SS−l1 (dense)
SS−IHT (dense)
SS−TV (uniform)
SS−l1 (uniform)
SS−IHT (uniform)
SS−TV−decorr
SS−l1−decorr
SS−IHT−decorr

(a) Reconstruction SNR vs. subsampling ratio (noiseless

sampling)

10 20 30 Inf
0

5

10

15

20

25

30

35

40

Sampling SNR (dB)

R
ec

on
st

ru
ct

io
n 

SN
R

 (d
B)

 

 

TVDN (dense)
BPDN (dense)
SS−TV (dense)
SS−l1 (dense)
SS−IHT (dense)
SS−TV (uniform)
SS−l1 (uniform)
SS−IHT (uniform)
SS−TV−decorr
SS−l1−decorr
SS−IHT−decorr

(b) Reconstruction SNR vs. sampling SNR (subsampling

ratio:1/16)

Fig. 1: Geneva HSI reconstruction performance for different sampling mechanisms and recovery methods.

Points with 1 reconstruction SNR (exact recovery) are not plotted.

B. The Geneva HSI

We evaluate the different methods, for different sampling rates (Fig. 1(a)), and different noise levels

(Fig. 1(b)), on a HSI generated from a ground truth map image 4 of farms in a suburb of Geneva. The

source spectra (i.e. columns of H) are chosen form the USGS digital spectral library [26].The HSI cube

has spatial slices of the resolution N = 256⇥ 256 that are taken over J = 224 frequency bands.

4We acknowledge Xavier Gigandet and Meritxell Bach Cuadra for providing this ground truth map.
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TABLE III: Source separation performance (Accuracy) of SS methods. Methods with the highest accuracy

are highlighted in each column.

Noise SNR +1 dB 30 dB 10 dB
Sampling rate 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

SS-IHT(dense sampling) 0.69 0.61 0.57 0.48 0.71 0.6 0.57 0.48 0.7 0.6 0.57 0.48
SS-l1(dense sampling) 1.0 1.0 0.95 0.81 1.0 1.0 0.95 0.8 1.0 0.98 0.91 0.73
SS-TV(dense sampling) 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.91 1.0 1.0 0.98 0.88

SS-IHT(uniform sampling) 0.43 0.38 0.31 0.25 0.43 0.37 0.31 0.26 0.43 0.37 0.3 0.26
SS-l1(uniform sampling) 0.97 0.73 0.45 0.31 0.95 0.73 0.48 0.3 0.96 0.75 0.42 0.3
SS-TV(uniform sampling) 1.0 0.98 0.9 0.76 1.0 0.97 0.89 0.74 1.0 0.97 0.88 0.74

SS-IHT-decorr 0.98 0.98 0.96 0.94 0.99 0.98 0.96 0.94 0.98 0.97 0.95 0.92
SS-l1-decorr 1.0 0.99 0.97 0.92 1.0 0.99 0.96 0.91 0.98 0.95 0.92 0.87
SS-TV-decorr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.98 0.96

1) Performance of the SS methods: Concerning the performance of the SS methods, we observe in

Fig. 1 that:

• The dense sampling scheme is always better than the uniform sampling scheme.

• The decorrelated scheme is always better than dense sampling for TV -based and IHT methods, but

is not for the `

1

-based method.

• The decorrelating method SS-TV-decorr results in perfect reconstruction in the cases where the

sampling ratio is higher or equal to 1/16 and performs better than all the other methods in all

regimes, except in high noise of 10 dB SNR, where the dense approach SS-TV (dense sampling)

performs slightly better.

2) Comparison with Classical CS Methods: We observed that SS-TV-decorr always obtained

significantly better results than the classical CS methods in all regimes.

3) Source Reconstruction: We reported in Tab. III the source separation performance of the SS methods.

Since source images are disjoint, the quality was measured by the source recovery accuracy indicating

the percentage of correctly classified pixels in the spatial domain. The method SS-TV-decorr, based

on TV regularization and decorrelation, which achieved the best performance for HSI reconstruction

also obtain the best performance for source separation. Figure 2 illustrates the reconstructed sources of

different SS methods for various sampling schemes (dense, uniform, decorrelating).

C. The Urban HSI

In order to evaluate different approaches on a real HSI, we consider the Urban HSI of size 256 ⇥
256⇥ 171 which was obtained from the site [27] of the US Army Topographic Engineering Center.

As the ground truth of this image (i.e., the true source images and their corresponding spectral

August 21, 2012 DRAFT
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Fig. 1: Geneva HSI reconstruction performance for different sampling mechanisms and recovery methods.

Points with 1 reconstruction SNR (exact recovery) are not plotted.

B. The Geneva HSI

We evaluate the different methods, for different sampling rates (Fig. 1(a)), and different noise levels

(Fig. 1(b)), on a HSI generated from a ground truth map image 4 of farms in a suburb of Geneva. The

source spectra (i.e. columns of H) are chosen form the USGS digital spectral library [26].The HSI cube

has spatial slices of the resolution N = 256⇥ 256 that are taken over J = 224 frequency bands.

4We acknowledge Xavier Gigandet and Meritxell Bach Cuadra for providing this ground truth map.
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TABLE III: Source separation performance (Accuracy) of SS methods. Methods with the highest accuracy

are highlighted in each column.

Noise SNR +1 dB 30 dB 10 dB
Sampling rate 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

SS-IHT(dense sampling) 0.69 0.61 0.57 0.48 0.71 0.6 0.57 0.48 0.7 0.6 0.57 0.48
SS-l1(dense sampling) 1.0 1.0 0.95 0.81 1.0 1.0 0.95 0.8 1.0 0.98 0.91 0.73
SS-TV(dense sampling) 1.0 1.0 1.0 0.92 1.0 1.0 1.0 0.91 1.0 1.0 0.98 0.88

SS-IHT(uniform sampling) 0.43 0.38 0.31 0.25 0.43 0.37 0.31 0.26 0.43 0.37 0.3 0.26
SS-l1(uniform sampling) 0.97 0.73 0.45 0.31 0.95 0.73 0.48 0.3 0.96 0.75 0.42 0.3
SS-TV(uniform sampling) 1.0 0.98 0.9 0.76 1.0 0.97 0.89 0.74 1.0 0.97 0.88 0.74

SS-IHT-decorr 0.98 0.98 0.96 0.94 0.99 0.98 0.96 0.94 0.98 0.97 0.95 0.92
SS-l1-decorr 1.0 0.99 0.97 0.92 1.0 0.99 0.96 0.91 0.98 0.95 0.92 0.87
SS-TV-decorr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.98 0.96

1) Performance of the SS methods: Concerning the performance of the SS methods, we observe in

Fig. 1 that:

• The dense sampling scheme is always better than the uniform sampling scheme.

• The decorrelated scheme is always better than dense sampling for TV -based and IHT methods, but

is not for the `

1

-based method.

• The decorrelating method SS-TV-decorr results in perfect reconstruction in the cases where the

sampling ratio is higher or equal to 1/16 and performs better than all the other methods in all

regimes, except in high noise of 10 dB SNR, where the dense approach SS-TV (dense sampling)

performs slightly better.

2) Comparison with Classical CS Methods: We observed that SS-TV-decorr always obtained

significantly better results than the classical CS methods in all regimes.

3) Source Reconstruction: We reported in Tab. III the source separation performance of the SS methods.

Since source images are disjoint, the quality was measured by the source recovery accuracy indicating

the percentage of correctly classified pixels in the spatial domain. The method SS-TV-decorr, based

on TV regularization and decorrelation, which achieved the best performance for HSI reconstruction

also obtain the best performance for source separation. Figure 2 illustrates the reconstructed sources of

different SS methods for various sampling schemes (dense, uniform, decorrelating).

C. The Urban HSI

In order to evaluate different approaches on a real HSI, we consider the Urban HSI of size 256 ⇥
256⇥ 171 which was obtained from the site [27] of the US Army Topographic Engineering Center.

As the ground truth of this image (i.e., the true source images and their corresponding spectral
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(a) Ground truth

(e) SS-TV-decorr, source reconstruction SNR: 8.64 dB

From 3% of the original data:
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(a) Pavia scene (b) Ground truth (c) SSïTVïdecorr (d) SSïl1ïdecorr

(e) SSïIHTïdecorr (f) SSïTV (Dense) (g) SSïl1 (Dense) (h) SSïIHT (Dense)

Fig. 3: Compressive classification of Pavia HSI using SS methods (with hard thresholding post-processing) for

dense and uniform decorrelating sampling schemes (subsampling ratio: 1/16). Classification maps contain five

classes on foreground pixels namely roads (gray), water (blue), vegetation (green), shadows (yellow), buildings

(red), and the background pixels are marked in black.

M is the index set of the foreground pixels. We then used these estimated spectra for our SS methods

in order to classify the foreground pixels, directly in compressed domain (separation and classification

problems are equivalent for spatially disjoint sources). For this we simply modify the simplex projection

constraints (i.e., S I
⇢

= I
n1) in both convex (52) and non-convex (58) approaches so that, it performs

only on the foreground pixels and we set the background pixels to zero i.e.
P

⇢

j=1

[S]

i,j

= 1 8i 2 M,

and [S]

i,j

= 0 8j, 8i /2 M.

Note that our SS methods are facing the following challenges for classifying this image: first, compres-

sive acquisition systems give measurements that are globally merging both background and foreground

pixels, and thus recovering only the foreground pixels (and setting the background to zero in (52) and (58))

from the CS measurements means that the contribution of the background pixels is considered as a noise

with a considerable energy. Second, pixels within the same class do not share exactly the same spectrum,

and their deviations from the approximated H is relatively high i.e. kXM �SMHT k
F

/kXMk
F

⇠ 28%.
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>90% accuracy with compression 1/32

Mixture not exactly linear: 28% discrepancy among pixels of same class
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Molecular Mass Spectroscopy
Matrix-assisted laser desorption/ionization

Very high-dimensional: 3D X spectra !
Numerical experiments with MALDI Imaging data 3
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Fig. 1 An imaging mass spectrometry data set is a data cube: Full spectra (A) are measured at several
spatial points of a sample (B). Hence such imaging data can be viewed by either visualizing the individual
spectra for selected measurement points or on can view the intensity image for a selected mass, e.g. the
intensity image for m/z= 4966 Da resp. m/z= 6717 Da displayed in (C) resp. (D).

the full molecular spectrum and equivalently contains complete metabolic informa-
tion.

Over the last ten years mass spectrometry has developed from primarily analyzing
single spectra to an imaging technology (MALDI Imaging), which allows to obtain
also spatial information, see Figure 1. Several different approaches of obtaining the
mass spectra do exist. However, just a few can be applied to represent the data as
an image. In surface analysis, Secondary Ion Mass Spectrometry (SIMS) [2] is most
often used, but one cannot measure large molecules with this technique. Measuring
small and large molecules (e. g. metabolites, lipids, and proteins) is possible with
MALDI [15].

The MALDI mass spectra are generated by ionization of the molecules by a laser.
A chemical solution applied to the tissue prevents the molecules to break into frac-
tions and supports the ionization. The ionized molecules are accelerated by an elec-
trical field, gain kinetic energy and travel through a flight tube. During their time of
free flight in the tube, the molecules are separated by mass following the physical law
of preserving energy. At the end of the flight tube, a detector measures the number of
arriving material [4].

However, the raw data is not accessible directly for diagnosis. Features, such as
baselines, characteristic peaks and isotope patterns need to be extracted or marker
values for specific tasks have to be identified when analyzing MALDI Imaging data.
In MALDI Imaging (see Figure 1), where several thousands of spectra have to be
evaluated for a single experiment, automated methods for feature extraction are es-
sential [16].

A single mass spectrometry data set s(m/z) consists of two sequences of num-
bers which state mass-to-charge ratio (m/z) values and the corresponding intensities
(counts of molecules having the specified m/z value). In imaging mass spectrometry
such as e.g. MALDI Imaging typically several thousand mass spectra are measured
and evaluated in a single experiment. In this case, each spectrum is annotated with
the coordinates x = (x1,x2) of the measurement position, i.e. a MALDI Imaging data
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Directly apply Compressive BSS
Compression factor roughly 10

Baseline!



26

Numerical experiments with MALDI Imaging data 11

0

2

4

6

8

0

2

4

6

8

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

2

4

6

8

m/z

mixture signature 1

mixture signature 2

mixture signature 3

20 k spectra, 3000 bins
first 3 components shown·103

Fig. 5 Mixture signatures and coefficient images obtained by matrix factorization approach for each of the
found classes.

– Mixture component decomposition lead to efficient data compression, i.e. instead
of storing the full spectrum, one only needs to store the K (e.g. K = 6) of its
approximate expansion with mixture components

Moreover, we emphasize, that computing a few and most important characteristic
spectra is the key for efficient analysis and subsequent analysis. However, in princi-
ple a full basis or frame of characteristic spectra can be determined, i.e. allowing a
full and exact recovery of each single measured spectrum as a weighted superposition
of characteristic spectra. Each of these weighted coefficients (mixture coefficients),
obtained form a partial or full decomposition, states the relevance of the related char-
acteristic spectrum for the given data.

Particularly interesting are the spatial plots of the weighting coefficients S

k,n as-
sociated with the different mixture components k = 1, . . . ,K which yield a soft seg-
mentation: The weighted coefficients S

k,n state how strongly mixture component k

contributes to the spectrum measured at position n. Hence, displaying S

k,n as a spa-
tial plot indicates regions having a molecular decomposition similar to the mixture
component A

k

, see Figure 5.
Further applications of this approach are e.g. as follows.

1. Analyzing a single mixture component: This reveals characteristic spectral pat-
terns, which are concentrated on one or several subintervals of the m/z axis. Po-
tential benefits are e.g. in protein and biomarker identification, which no longer
need to be based on selected m/z values but can exploit the structure of char-
acteristic spectra, which potentially resemble full isotope patterns for multiple
molecular fragments.
This approach allows to sequentially determine the most dominant metabolic
structures of the available data. As an example see the characteristic spectra de-
termined from a MALDI Imaging experiment displayed in Figure 5. The first,



Outlook 
l Significant challenges ahead in signal processing
- Big Data
- Ubiquitous but Cheap Sensing (i.e dirty signals)

l Sometimes, no need to reconstruct 
- clustering
- classification

l Methods that would allow principled and guaranteed 
task-based processing very appealing
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