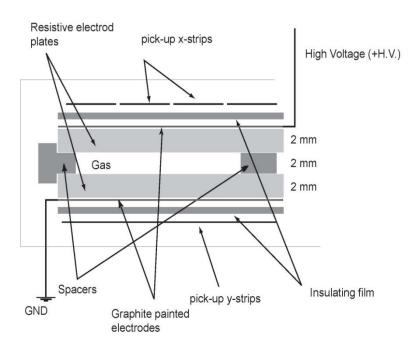


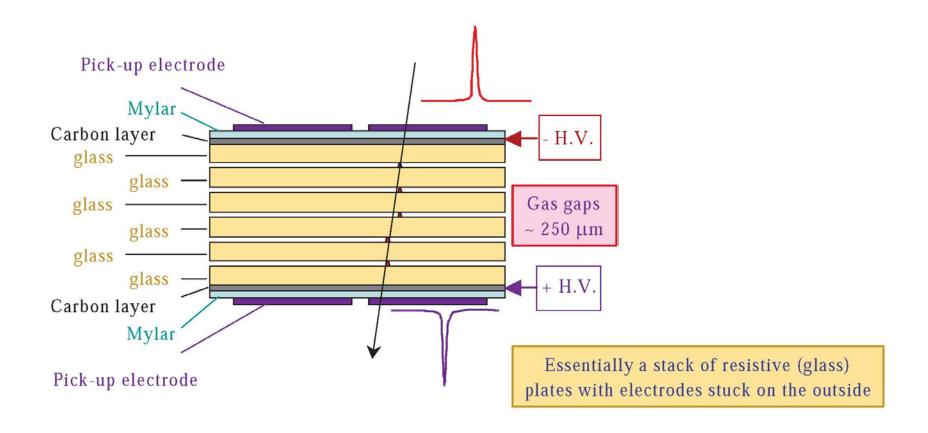
Réseau Instrumentation IN2P3 Détecteurs gazeux



Activités du LPC Clermont-Ferrand

Expertise du LPC

Essentiellement sur les RPC (Resistive Plate Chambers) mono-gap (~2 mm de gaz)


- Permet de couvrir une grande surface de détection à un coût « raisonnable »
- Fonctionnement de streamer (qqs Hz/cm²)=> avalanche (qqs 100 Hz/cm² => LHC)
- Tenue aux radiations jusqu'à qqs centaines de mC/cm²
- Résolution spatiale de l'ordre du millimètre (dépend de la taille du strip/pad de lecture)
- Résolution temporelle de l'ordre de la nano-seconde
- Workshop « RPC and related detectors » tous les 1,5 ans

Intérêt récent du LPC

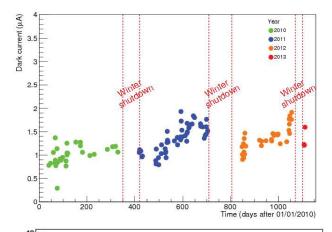
Intérêt pour les xgap RPC (multi-gap Resistive Plate Chambers)

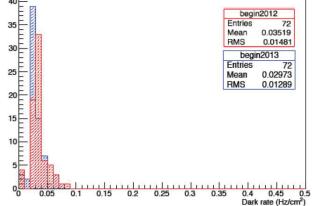
• Résolution temporelle de l'ordre de la centaine de pico-seconde



Les RPCs du Muon Trigger d'ALICE

- Détecteur = RPC mono-gap, 120 m² => Collab. avec Turin
 - ✓ RPCs fabriquées dans une PME Italienne
 - ✓ Electrodes en « bakélite » de résistivité $\sim 5 \cdot 10^9 \, \Omega$.cm
- Fonctionnement dans un environnement difficile (jusqu'à une dizaine de Hz/cm² sur plusieurs années)
 - ✓ Mélange gazeux 90% C2H2F4 (FORANE), 10% i-C4H10 (isobutane), 0.3% SF6
- Electronique de very front-end pour le mode streamer (seuil ~80 mV) ou « maxiavalanche » (seuil ~10 mV)
 - √ 2500 cartes pour 21k canaux
 - ✓ Pas d'amplification au niveau du very FE
 - ✓ Charge ~100 pC dans le gaz





Les RPCs du Muon Trigger d'ALICE

- Charge intégrée en 3 ans d'opération au LHC: 2,9 (8,3) mC/cm² en moyenne (RPC la plus exposée)
 - ✓ R&D jusqu'à 50 mC/cm² sans effet majeur de vieillissement
- Courant d'obscurité
 - \checkmark < 2 µA par RPC de ~2 m²
 - ✓ Très faible augmentation sur les 3 premières années de fonctionnement au LHC
- Comptage simple
 - \checkmark < 0,1 Hz/cm²
 - ✓ Stable sur les 3 premières années de fonctionnement au LHC
- Efficacité stable et supérieure à 95% pour toutes les 72 RPCs

Upgrade du very FE des RPCs du Muon Trigger d'ALICE

- ☐ But => Limiter le vieillissement des détecteurs RPC dans les conditions de fonctionnement du LHC après 2018, à plus haute luminosité (x 5-10, => jusqu'à 100 Hz/cm² sur les RPCs)
- Solution => very FE avec amplification (RPC en mode avalanche, comme pour ATLAS & CMS)
 - Charge totale (moyenne):
 Q~10-30 pC (but)
 vs. 100 pC actuellement
 - Charge rapide sur le strip
 @FE-threshold:
 q~50-100 fC (but)
 compatible avec le niveau de
 bruit mesuré en caverne
- Pas d'ASIC existant ayant toutes les caractéristiques requises

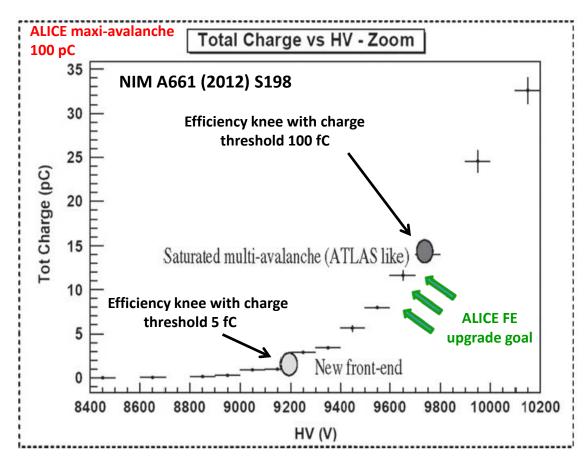
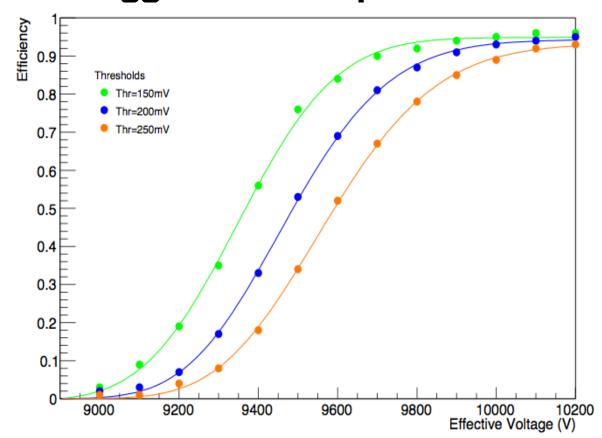



Fig. 4. Average total charge per pulse delivered in the gas vs. applied voltage.

Upgrade du very FE des RPCs du Muon Trigger d'ALICE: premiers résultats

Cartes FE prototypes équipées de l'ASIC des RPCs de CMS sur banc de test RPC (Turin)

Courbes d'efficacité

- Shift du plateau d'efficacité vers des valeurs de tension de fonctionnement plus basses pour des seuils plus bas (comme attendu)
- Shift de 600 V pour un seuil de 200 mV par rapport aux conditions actuelles de fonctionnement dans ALICE en « maxi-avalanche »

Upgrade du very FE des RPCs du Muon Trigger d'ALICE: ASIC FEERIC

Design d'un ASIC (pôle MICRHAU) => FEERIC

- Caractéristiques et performances
 - ✓ Technologie AMS 0.35µm CMOS
 - √ 8 voies/ASIC
 - ✓ Gamme dynamique q=20 fC 5 pC
 - ✓ Bruit < 2 fC
 </p>
 - ✓ Consommation < 70 mW/voie sous 3V
 </p>
 - ✓ Amplificateur transimpédance
 - ✓ Discriminateur Zero-Crossing
 - ✓ Résolution temporelle ~ 100 ps (q > 100 fC)
 - ✓ Signaux d'entrée bipolaires
 - ✓ Signaux de sortie au format LVDS
- Envoi en fonderie fin mai 2013 (livraison en aout)

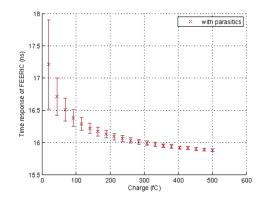


Fig. 4. Time walk and resolution, parasitic simulation results.

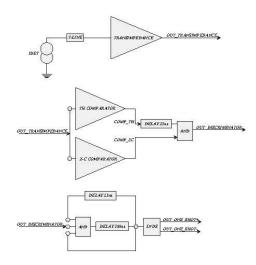
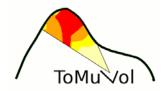
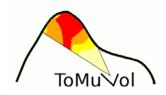



Fig. 1. One channel block diagram of FEERIC.

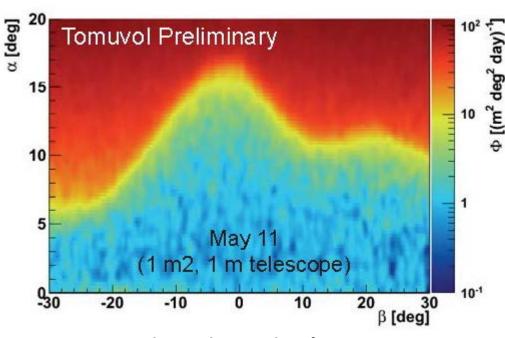
Projet ToMuVol

PROJET ToMuVol: Tomographie Muonique des Volcans, en Collab. avec IPN LYON

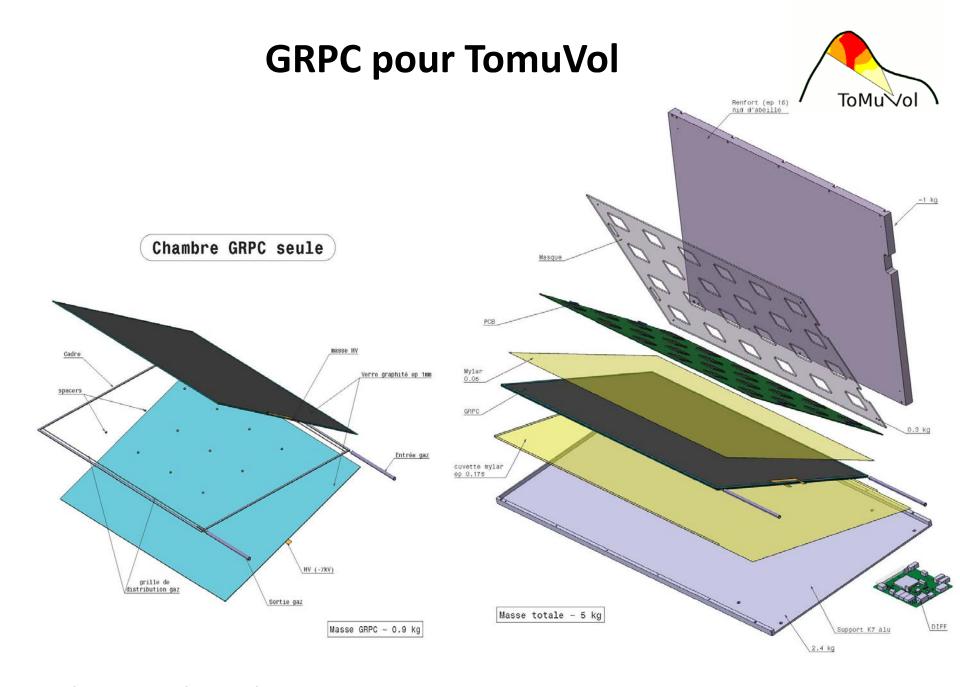
Prises de données test en 2011-2012 avec des **G**RPC (Glass RPC, mono-gap) de 1 m² de CALICE (ILC)

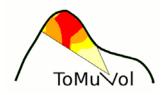

- ✓ Mélange gazeux : 93% C2H2F4 (FORANE), 5% i-C4H10 (isobutane), 2% SF6
- ✓ Mode avalanche
- ✓ Pads de lecture de 1cm × 1cm (~10.000 pads/GRPC)
- ✓ HARDROC very-FE chip

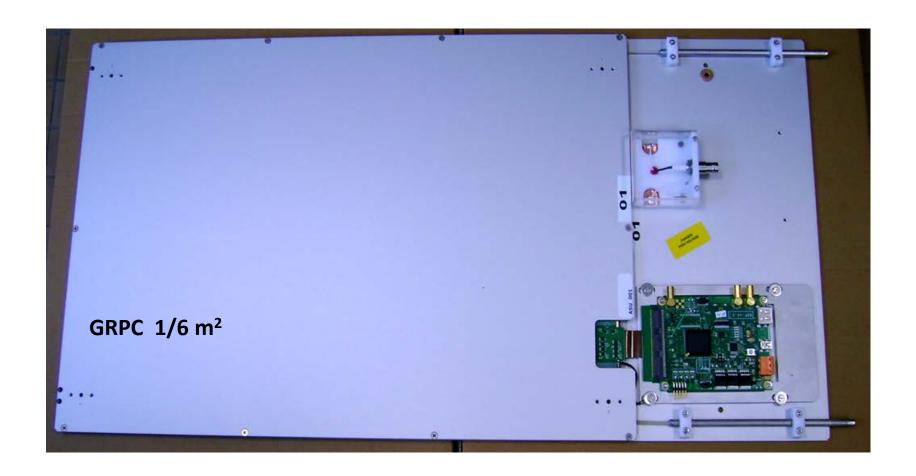
Adaptations pour ToMuVol => mobilité, faible consommation, tropicalisation Réalisation de 30 chambres GRPC (Glass - Resistive Plate Chamber)


- ✓ 4 plans de 1 m² au total, 1/6 m² par GRPC
- ✓ Taille du PCB => $33x50cm^2$ => zone active, avec des pads de $1cm \times 1cm$
- ✓ Verre d'épaisseur 1.1 mm, gap de gaz de 1.2 mm

Intérêt particulier pour la R&D gaz: mélange, débit, sécurité, etc => en cours ...


Projet ToMuVol





« Ombre » du Puy de Dôme

GRPC pour ToMuVol

