
A la recherche de la Nouvelle Physique

Z' ruled out up to ~ 2.9TeV

- Des particules lourdes qui se désintègrent à l'intérieur du détecteur en des ensembles de particules observables (pics de masse invariante)
- On peut les produire toutes seules (par ex Z') ou par paires (par ex quarks lourds)
- Pas d'observation -> des limites sur les masses

CI ruled out up to
$$\Lambda \sim 26$$
Te

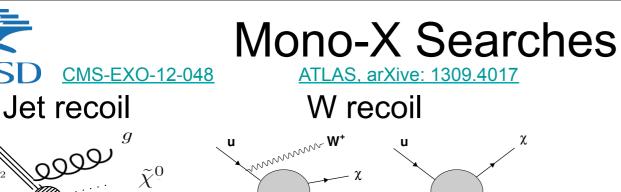
$$\mathcal{L} = \frac{g^2}{\Lambda^2} \dots$$

HEP 2014

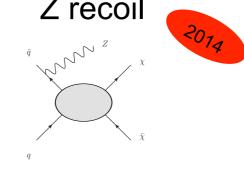
ATLAS Exotics Searches* - 95% CL Exclusion Status: ICHEP 2014

Jets $E_{T}^{miss} \int \mathcal{L} dt [fb^{-1}]$ Model *l*,γ Mass limit Reference ADD $G_{KK} + g/q$ 1-2 j Yes 4.7 n = 21210.4491 ADD non-resonant $\ell\ell$ 2e,μ 20.3 n = 3 HLZTLAS-CONF-2014-03 ADD QBH $\rightarrow \ell q$ 1 e, µ 20.3 *n* = 6 1311.2006 1 j ADD QBH 2 j 20.3 *n* = 6 be submitted to PRE ADD BH high N_{trk} 2 µ (SS) 20.3 n = 6, M_D = 1.5 TeV, non-rot Bl 1308.4075 ADD BH high $\sum p_T$ $\geq 1 \ e, \mu$ $\geq 2 j$ 20.3 $n = 6, M_D = 1.5$ TeV, non-rot BH 1405.4254 RS1 $G_{KK} \rightarrow \ell \ell$ 2 e, µ $k/\overline{M}_{Pl} = 0.1$ 1405.4123 20.3 RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$ 4.7 1.23 TeV $k/\overline{M}_{Pl} = 0.1$ 1208.2880 2 e, µ Yes Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$ 2 j / 1 J 20.3 $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-039 2 e, µ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ 4 b 590-710 GeV $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-005 19.5 BR = 0.925 ATLAS-CONF-2013-052 Bulk RS $g_{KK} \rightarrow t\overline{t}$ 1 e.µ $\geq 1 \text{ b}, \geq 1 \text{ J/2j}$ Yes 14.3 $S^1/Z_2 ED$ 2 e, µ 5.0 1209.2535 1.41 TeV UED ATLAS-CONF-2012-072 2γ Yes 4.8 $\mathsf{SSM}\ Z' \to \ell\ell$ 2 e, µ 20.3 1405.4123 SSM $Z' \rightarrow \tau \tau$ 2τ 19.5 ATLAS-CONF-2013-066 SSM $W' \rightarrow \ell v$ 1 e, µ Yes 20.3 ATLAS-CONF-2014-017 COM 14// ~ ~ 400 445 Scalar I O 1st gen 2 e $\geq 2 \; j$ 1.0 660 GeV $\beta = 1$ 1112 4828 Scalar LQ 2nd der 2μ ≥ 2 j 1.0 685 GeV $\beta = 1$ 1203.3172 Scalar LQ 3rd gen 1 e, μ , 1 τ 1 b, 1 4.7 $\beta = 1$ 1303.0526 534 GeV Vector-like quark $TT \rightarrow Ht + X$ 1 e, µ \geq 2 b, \geq 4 j Yes 14.3 T in (T,B) double ATLAS-CONF-2013-018 Vector-like quark $TT \rightarrow Wb + X$ 1 e, µ isospin singlet ATLAS-CONF-2013-060 $\geq 1 \text{ b}, \geq 3 \text{ j}$ Yes 14.3 Vector-like quark $TT \rightarrow Zt + X$ T in (T,B) doublet ATLAS-CONF-2014-036 2/≥3 e,µ >2/>1 b 20.3 Vector-like quark $BB \rightarrow Zb + X$ B in (B,Y) doublet 2/≥3 e,µ ATLAS-CONF-2014-036 ≥2/≥1 b 20.3 B in (T.B) double Vector-like quark $BB \rightarrow Wt + X = 2 e, \mu$ (SS) $\geq 1 b, \geq 1 j$ Yes ATLAS-CONF-2013-051 14.3 Excited quark $q^* \rightarrow q\gamma$ 1 j 20.3 only u^* and d^* , $\Lambda = m(q^*)$ 1309.3230 Excited quark $q^* \rightarrow qg$ only u^* and d^* , $\Lambda = m(q^*)$ 2 j 20.3 o be submitted to PRD Excited quark $b^* \rightarrow Wt$ 1 or 2 e, µ 1 b, 2 jor 1 j Yes 4.7 left-handed coupling 1301.1583 Excited lepton $\ell^* \rightarrow \ell \gamma$ $\Lambda = 2.2 \text{ TeV}$ 1308.1364 2 e, μ, 1 γ 13.0

15


Première possibilité : des résonances

Final State	Highest mass event	Highest mass limit	
2x(top jet)	~1.2TeV	0.8TeV	
2x(bZ(ll))	>1TeV	0.7TeV	
2x(jjj)	~1.9TeV	0.65TeV	
2x(jjb)	~1.7TeV	0.835TeV	
2x(top tau)	$S_T \sim 0.8 \text{TeV}$	0.55TeV	
2x(tau b)	~0.85TeV	0.74TeV	
2x(mu jet)	~1.2TeV	1.07TeV	
	ATLAS Preliminary		


 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

single

pair

ATLAS, arXive: 1404.0051 Z recoil

Dilepton Z

Deuxième possibilité : de la matière noire

$E_{\rm T}^{\rm miss}$ (GeV) \rightarrow	> 350	> 500
$Z(\nu\nu)$ +jets	5286 ± 323	671 ± 81
W+jets	2457 ± 102	269 ± 20
tī	72 ± 36	6 ± 3.0
$Z(\ell\ell)$ +jets	18 ± 9.0	2 ± 1.0
Single t	20 ± 10.0	1 ± 0.5
QCD Multijets	23 ± 11.5	1 ± 0.5
Total SM	7875 ± 341	949 ± 83
Data	8056	894
Exp. upper limit	773	165
Obs. upper limit	882	135

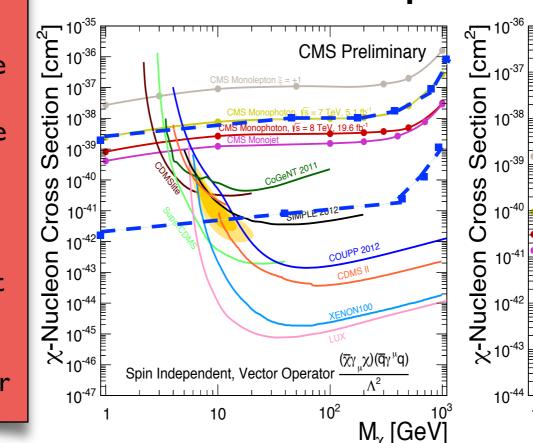
Hadronic W.7 Pr

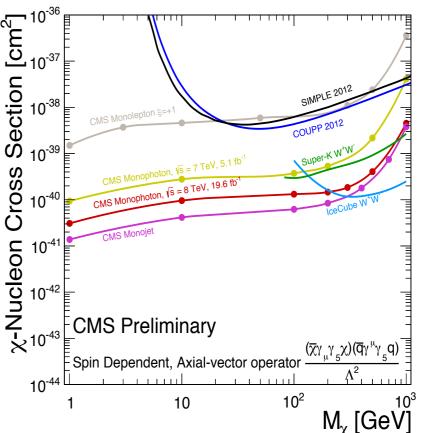
JCSD

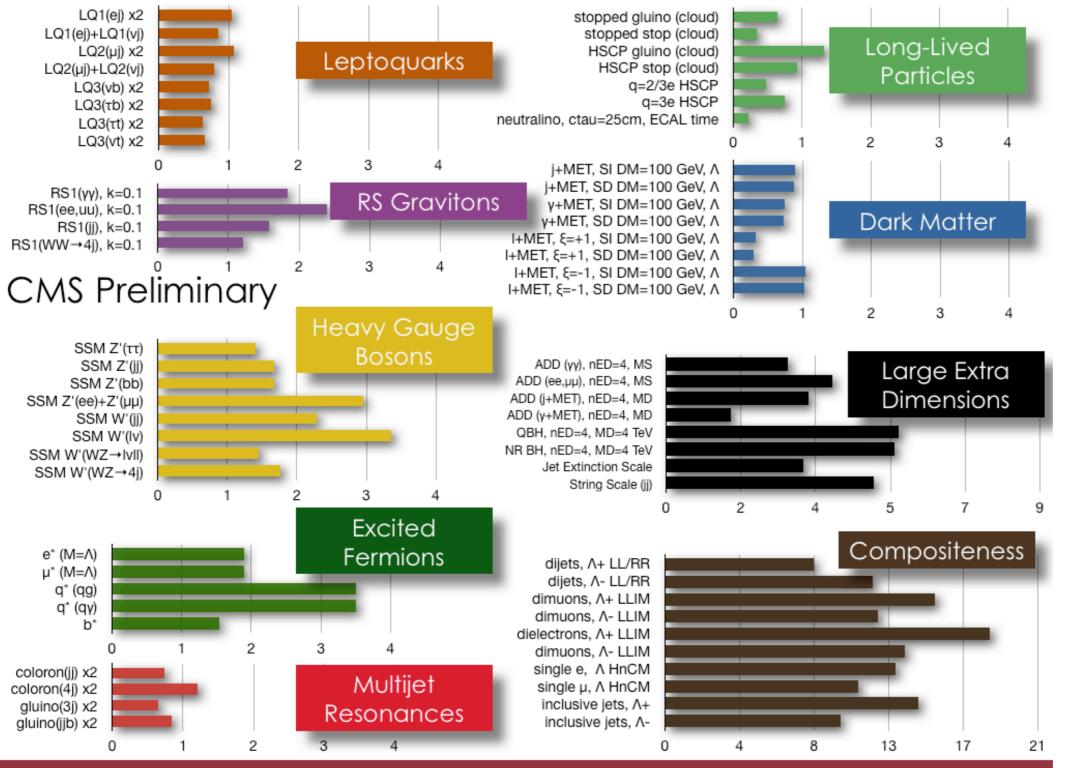
			R				
		$E_{\rm T}^{\rm miss}$ threshold [GeV]					
rocess	$E_{\rm T}^{\rm miss} > 350 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 500 { m ~GeV}$	Process	150	250	350	450
$V \rightarrow \nu \bar{\nu}$	402^{+39}_{-34}	54^{+8}_{-10}	ZZ	41 ± 15	6.4 ± 2.4	1.3 ± 0.5	0.3 ± 0.1
$V \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	$\begin{array}{r} 402^{+39}_{-34} \\ 210^{+20}_{-18} \end{array}$	22^{+4}_{-5}	WZ	8.0 ± 3.1	0.8 ± 0.4		
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$	$WW, t\bar{t}, Z \to \tau^+ \tau^-$	1.9 ± 1.4	$0^{+0.7}_{-0.0}$	$0^{+0.7}_{-0.0}$	$0^{+0.7}_{-0.0}$
\overline{t} , single t	39^{+10}_{-4}	$3.7^{+1.7}_{-1.3}$	Z+jets	0.1 ± 0.1		-	-
	-		W+jets	0.5 ± 0.3		-	-
otal	707^{+48}_{-38}	89^{+9}_{-12}	Total	52 ± 18	7.2 ± 2.8	1.4 ± 0.9	$0.4^{+0.7}_{-0.4}$
Jata	705	89	Data	45	3	0	0

www.w'

Des particules lourdes qui ne se désintègrent pas à l'intérieur du détecteur

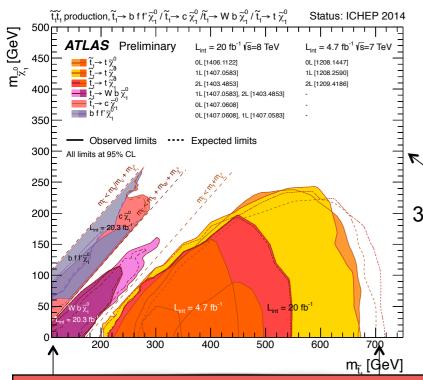

To Da

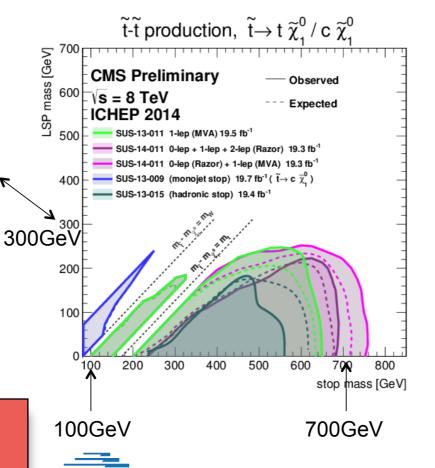

 $\tilde{\chi}^0$


Peuvent se manifester par de l'énergie manquante transverse si émise en même temps qu'une autre « particule » (W, Z, jet)

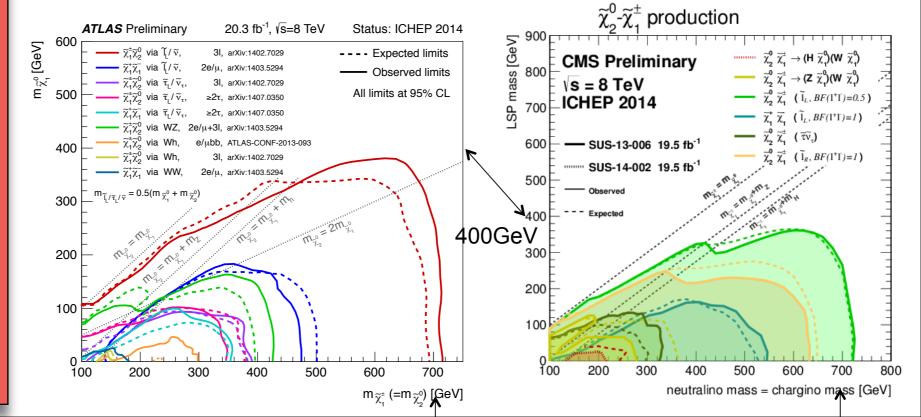
Des limites sur les masses et les sections efficaces qui peuvent se comparer aux recherches hors accélérateur

Mono-X 90% C.L. limit Interpretations




CMS Exotica Physics Group Summary – ICHEP, 2014

Recherches résumées dans des contraintes sur les échelles de masses des résonances... dépendant du modèle choisi

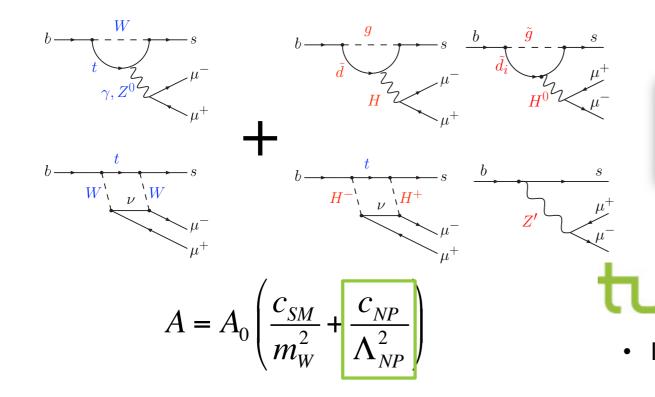


- Des particules lourdes qui engendrent une cascade de désintégration, avec en bout de course des particules supersymétriques qui échappent à la détection.
- Interprétation possible dans des versions spécifiques de la supersymétrie, comme le Constrained Minimal Supersymmetric Standard Model

Variation : des particules supersymétriques (par exemple les partenaires du top et des bosons de jauge electrofaibles)

ATLAS & CMS Ewkinos

ATLAS SUSY Searches* - 95% CL Lower Limits


Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	$\int \mathcal{L} dt [\mathbf{fb}]$	Mass limit		Reference
$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{+} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \\ \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	1.2 Te 1.1 TeV 850 GeV 1.33 1.18 Te 1.12 TeV 1.24 T 1.24 T 1.26 T 619 GeV 900 GeV 690 GeV 590 GeV 590 GeV	any m(\tilde{q}) m($\tilde{\chi}_{1}^{0}$)=0 GeV, m(1 st gen. \tilde{q})=m(2 nd gen. \tilde{q}) TeV m($\tilde{\chi}_{1}^{0}$)=0 GeV W m($\tilde{\chi}_{1}^{0}$)<200 GeV, m($\tilde{\chi}^{\pm}$)=0.5(m($\tilde{\chi}_{1}^{0}$)+m(\tilde{g})) W m($\tilde{\chi}_{1}^{0}$)=0 GeV eV tan β <15 1.6 TeV tan β >20	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
$\begin{array}{c} 3 \xrightarrow{\tilde{x}} \delta b \tilde{b} \tilde{\lambda}_{1}^{0} \\ \tilde{y} \rightarrow t \tilde{\lambda}_{1}^{0} \\ \tilde{y} \rightarrow t \tilde{\lambda}_{1}^{0} \\ \tilde{y} \rightarrow t \tilde{\lambda}_{1}^{1} \\ \tilde{y} \rightarrow b \tilde{\lambda}_{1}^{1} \end{array}$	0 0 0-1 <i>e</i> ,µ 0-1 <i>e</i> ,µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1			1407.0600 1308.1841 1407.0600 1407.0600
$\begin{array}{c} \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow b\tilde{\chi}_{1}^{0}\\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow t\tilde{\chi}_{1}^{\pm}\\ \tilde{b}_{1}\tilde{b}_{1},\tilde{b}_{1}\rightarrow t\tilde{\chi}_{1}^{\pm}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}),\tilde{i}_{1}\rightarrow b\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}),\tilde{i}_{1}\rightarrow b\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{medium}),\tilde{i}_{1}\rightarrow t\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{medy}),\tilde{i}_{1}\rightarrow t\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{heavy}),\tilde{i}_{1}\rightarrow t\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{heavy}),\tilde{i}_{1}\rightarrow t\tilde{\chi}_{1}^{0}\\ \tilde{i}_{1}\tilde{i}_{1}(\text{netural GMSB})\\ \tilde{i}_{2}\tilde{i}_{2},\tilde{i}_{2}\rightarrow\tilde{i}_{1}+Z\end{array}$	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 1\text{-}2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	100-620 GeV 275-440 GeV 110-167 GeV 130-210 GeV 215-530 GeV 210-640 GeV 260-640 GeV 90-240 GeV 150-580 GeV 290-600 GeV	$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 90 \text{GeV} \\ & m(\tilde{\chi}_{1}^{\pm}) = 2 m(\tilde{\chi}_{1}^{0}) \\ & m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = m(\tilde{\imath}_{1}) \cdot m(W) \cdot 50 \text{GeV}, m(\tilde{\imath}_{1}) < 150 \text{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \text{GeV} \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ 1 e, µ 4 e, µ	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV 140-465 GeV 100-350 GeV 700 GeV 420 GeV 285 GeV 620 GeV	$\begin{split} &m(\tilde{\chi}_{1}^{0}){=}0\;GeV\\ &m(\tilde{\chi}_{1}^{0}){=}0\;GeV, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0}))\\ &m(\tilde{\chi}_{1}^{0}){=}0\;GeV, m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0}))\\ &m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0}))\\ &m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons\;decoupled\\ &m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons\;decoupled\\ &m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\lambda}_{1}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{\sigma}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	0	1 jet 1-5 jets - - -	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{\pm})\text{-}m(\tilde{\chi}_{1}^{0})\text{=}160~MeV,~\tau(\tilde{\chi}_{1}^{\pm})\text{=}0.2~ns\\ m(\tilde{\chi}_{1}^{0})\text{=}100~GeV,~10~\mu \text{s}\text{-}\tau(\tilde{g})\text{-}1000~s\\ 10\text{-}tan\beta\text{-}50\\ 0.4\text{-}\tau(\tilde{\chi}_{1}^{0})\text{-}2~ns\\ 1.5\text{-}c\tau\text{-}156~mm,~BR(\mu)\text{=}1,~m(\tilde{\chi}_{1}^{0})\text{=}108~GeV \end{array}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
$ \begin{array}{c} \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ \texttt{Bilinear RPV CMSSM} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{\nu}_{\mu}, e\mu \tilde{v} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (SS) \\ e \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	1.1 TeV	1.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ 5 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_1^0)>0.2\times m(\tilde{\chi}_1^{\pm}), \lambda_{121}\neq 0$ $m(\tilde{\chi}_1^0)>0.2\times m(\tilde{\chi}_1^{\pm}), \lambda_{133}\neq 0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 <i>b</i> mono-jet	Yes Yes	4.6 14.3 10.5	100-287 GeV 350-800 GeV le 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

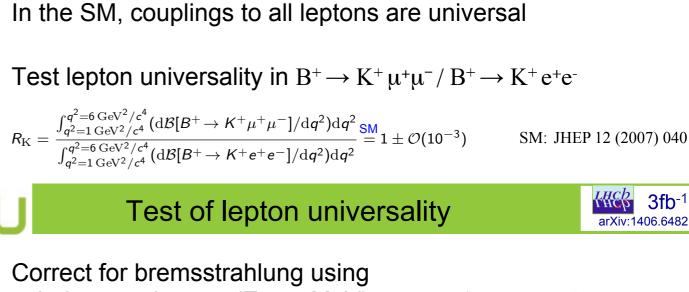
*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Recherches résumées dans des contraintes sur les échelles de masses des résonances... dépendant du modèle choisi

ATLAS Preliminary

Rare quark decays: Contribution of NP as correction to the SM

What is the scale of Λ_{NP} ? What is its coupling c_{NP} ?

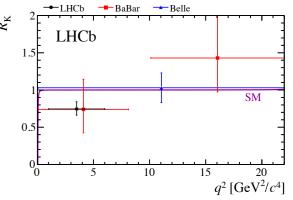

July 2014

Johannes Albrecht

- Désintégrations du b observées à LHCb.
- Processus rares, supprimés dans le MS, potentiellement très sensibles aux effets de **Nouvelle Physique**
- Plusieurs déviations dans des processus b->s II (B->K*mu mu, B->K mu mu)
- Résultats récents sur l'universalité leptonique pour B->KII, déviant du MS

Une autre approche : processus de basse énergie, sensibles à des particules plus lourdes

Test of lepton universality


Correct for bremsstrahlung using calorimeter photons ($E_T > 75 MeV$)

 $R_{\rm K} =$

- Migration of events into/out of the $1 < q^2 < 6 \text{ GeV}^2$ region corrected using MC
- Double ratio with resonant decay • $B^{\scriptscriptstyle +}\! \to J/\psi(e^+e^{\scriptscriptstyle -})\,K^+$ measured
- In 3fb⁻¹ LHCb determines

 $R_{\rm K} = 0.745^{+0.090}_{-0.074}({
m stat})^{+0.036}_{-0.036}({
m syst})$

(consistent with SM at 2.6σ)

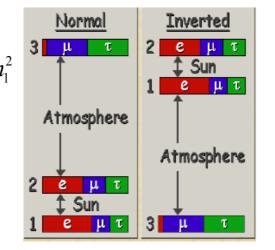
THCP 3fb⁻

arXiv:1406.6482

LHCb-PAPER-2014-024 [Preliminary], Belle [PRL 103 (2009) 171801], BaBar [PRD 86 (2012) 032012]

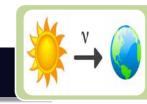
Neutrinos, matière noire, et autres sujets à discussion

Three Neutrino Parameters


3 masses, 3 mixing angles and 1 Dirac +2 Majorana phases

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & & \\ C_{23} & S_{23} \\ & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & e^{-i\delta}S_{13} \\ & 1 & \\ -e^{i\delta}S_{13} & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} \\ & -S_{12} & C_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

$$\mathcal{C}_{12} = \cos\theta_{12} \text{ etc.}, \ \delta \ CP\text{-violating phase}$$


- Oscillation experiments sensitive to mass squared differences $\Delta m_{21}^2 = m_2^2 - m_1^2$, $\Delta m_{31}^2 = m_3^2 - m_1^2$
- Two possible mass orderings

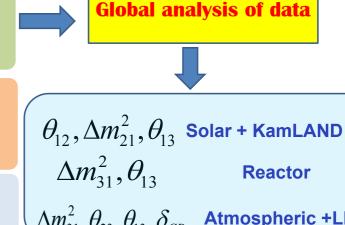
Oscillation experiments not sensitive to Majorana phases

Combinaison d'expériences d'oscillation: apparition ou disparition, différentes longueurs, différentes sources...

Srubabati Goswami Neutrino Phenomenology

Solar Neutrinos : Cl , Gallex/GNO/SAGE , SK , SNO, Borexino

Atmospheric Neutrinos


Superkamiokande

Accelerator Neutrinos

Reactor Neutrinos

K2K, MINOS, T2K

A snapshot of the oscillation experiments

$\Delta m_{31}^2, \theta_{23}, \theta_{13}, \delta_{CP}$ Atmospheric +LE

KamLAND,Palo-Varde CHOOZ,Double-CHOOZ Interplay among different sectors because of $\ \theta_{\!13}$

New data in 2014

- New data from reactor experiments Double-Chooz, Daya-bay, Reno
- Excess around 5 MeV in RENO and Double-Chooz
- New data from ICECUBE, MINOS+, SK4 atmospheric
- SK4 1306 day energy and zenith spectrum for solar
- T2K disappearance data