Status and prospects for atmospheric v experiments

[in view of Mass Hierarchy determination]

I Atmospheric Neutrinos The PMNS Matrix Matter Effects Fluxes and cross-sections

II Detectors (latest achievements and prospects) Water/Ice Cherenkov Magnetized Trackers Liquid Argon TPCs

Antoine Kouchner University Paris 7 Diderot- AstroParticle and Cosmology

Credits - Acknowledgements

J. Brunner, A. Cabrera, A. de Gouvea, D. Grant, M. Nakahata, N. Mondal, A. Tonazzo, C. Walter, R. Wendell

ICFA Neutrino European Meeting

PA

APC, Paris 08/01/2014

Oscillations of Massive Neutrinos

Neutrinos have distinct masses and mix (PMNS)

Neutrino oscillations can be described with 6 parameters (3 Dirac neutrinos):

• « Standard approach » :probe $v_{\mu} \leftrightarrow v_{e}$ governed by Δm_{13}^{2}

$$P_{3\nu}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} \theta_{23} P_{2\nu} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}^{\text{eff}} \sin^{2} \left(\frac{1}{2} + \frac{1$$

Insensitive to the sign of Δm_{13}^2 at leading order.

Matter effects (MSW) come to the rescue \rightarrow Modify the oscillation probability (Additional potential A = $\pm \sqrt{2} G_F N_e$ in the Hamiltonian)

(Constant Density) Matter Effects

 $\Delta m^2_{13} > 0$ – Normal Mass Hierarchy $\Delta m^2_{13} < 0$ – Inverted Mass Hierarchy

Matter resonance: $A \rightarrow \Delta_{13} \cos 2\theta_{13}$

- Effective mixing maximal
- Effective osc. frequency minimal

Resonance energy Earth: - Mantle $E_{res} \sim 7 \text{ GeV}$ - Core $E_{res} \sim 3 \text{ GeV}$

Requirements:

- Δ₁₃ ~ A matter potential must be significant but not overwhelming
- L large enough matter effects are absent near the origin
- Distinction between neutrinos and anti-neutrinos

→ different flux and cross-sections!

Phenomenological Considerations

Inverted Hierachy
Normal Hierachy

In each case, CP-phase is varied in steps of 30 degrees

 Hierarchy differences disappear at around 15 GeV

Phenomenological Considerations

Inverted HierachyNormal Hierachy

In each case, CP-phase is varied in steps of 30 degrees

- Hierarchy differences disappear at around 15 GeV
- P(v_µ→v_e) < 2% at 20 GeV

2 flavor $P(v_{\mu} \rightarrow v_{\tau})$ in vacuum is a valid approximation Recent results from ANTARES and IceCube

Phenomenological Considerations

Inverted HierachyNormal Hierachy

In each case, CP-phase is varied in steps of 30 degrees

 Hierarchy differences disappear at around 15 GeV

Degeneracies due to parameter uncertainties must be carefully considered!

Atmospheric neutrino spectrum

Produce neutrinos and anti-neutrinos

Calculations now made as a function of the position on Earth and the time in year

 Broad energy range – Steeply falling spectrum

→ Requires good energy resolution

Broad path-length range
 → Requires good direction resolution

7

But enhancement possible:

- r increases with energy
- Larger effect for second octant

Muon versus Electron channels

±10% Earth density

Muons provide more statistics

Electron channel is more robust against detector resolutions... 8

Brings sensitivity to the Mass hierarchy

Lately considered by PINGU and ORCA while main channel for SK/HK

Neutrino Interactions

Figure of merit I . Blennow

Atmospheric detectors

Cherenkov - Underground • SuperK → HyperK, MEMPHYS?	 Magnetized Iron Calorimeters SOUDAN,MINOS → ICAL, MIND? 	Liquid Argon • Icarus \rightarrow LBNO/E
 500 kton Low threshold No charge ID 	 50-100 kton Charge separation Good tracking Hadronic shower 	 20 – 100 kton Excellent µ and e tracking Hadronic shower Low threshold
 Deep-sea/ice Antares/Icecube →ORCA/PINGU Multi-Mton ! Polatively poor E resolution 	 Poor electron sensitivity Relatively high threshold ~ GeV Accelerator 	 Magnetization? Liquid Scintillator (LENA) Not covered T.Wladyslaw
 No charge ID Relatively high threshold ~ GeV 	Atmospheric / Super-K reactor Atmospheric / Super-K I I I I I I I I I I I I I I I I I I I	tatistics TeV I0TeV I EeV statistics IceCube/km^3

The latest results from SK

📖 Nakahata, ICRC 2013

Sensitivity (σ)	$sin^2\theta_{23}$	SK Current	SK + 10 years
Lieversby	0.4	0.70	0.98
Hierarchy	0.6	1.50	2.10
Ostant	0.4	2.00	2.60
Octant	0.6	1.61	2.10

NH	χ^2_{min} =	= {	557.7	' /	477	dof
IH	χ^2_{min} =	= {	556.2	2/	477	dof

Preference for IH second octant (not significant though)

Prospects with HyperKamiokande

Proposal for ~500 kT multi-purpose Water Cherenkov facility 295 km from JPARC and 8km off from SK. 1750 mwe overburden.

- Well-known technology
- Sensitive to v_e and v_{μ} (and v_{τ})
- Good control of systematics

Status:

- Among top priorities in Japan (with ILC) : 800 M\$ estimated cost (without beam)
- If funded, access tunnel work should start in 2016
- Excavation works in 2018
- Detector operation in 2023

Similar prospects for MEMPHYS

PA. Tonazzo

Prospect for the MH (atm)

Can determine MH at 3σ or more for values of $\sin^2 \theta_{23} > 0.4$ with 10 years of data. Improved sensitivity is expected by adding beam data (>1 σ sensitivity alone, depending on δ_{CP}) \rightarrow >3 σ in all cases.

First achievements with Neutrino Telescopes

Proposed Low Energy Extensions

Akhmedov et al. JHEP 02 (2013) 082

Optimized layouts still under study

P. Koojman et al, ICRC proc 0164

A. Gross et al, ICRC13 proc 0555

In situ tests of new Optical Module

17

Proposed Low Energy Extensions

P. Koojman et al, ICRC proc 0164

A. Gross et al, NNN13

KM3NeT Collaboration

19

PINGU sensitivities

PINGU collaboration, arXiv:1306.5846

Different studies performed. Sys uncertainties include norm (30%), spectral index (±0.05), energy scale (10%), zenith bias (10%) Realistic energy and direction resolutions

Some sensitivity recovered with "cascade" events (same resolutions as tracks) Now compatible with e.g. W. Winter, PRD 88, 1, 013013

P5 Workshop Future HE Physics, Dec13

- Analysis fully updated since Snowmass
 - Factors lowering significance:
 - higher MC sampling to eliminate unanticipated systematic bias from fluctuations
 - · more accurate resolution parametrizations
 - inclusion of NC events
 - kinematic suppression of ν_τ events
 - Factors raising significance:
 - improved event selection
 - improved event fitting
 - use of cascades, PID

ORCA sensitivity

all results are preliminary

To optimally distinguish between IH and NH: likelihood ratio test with nuisance parameters \rightarrow deal with degeneracies by fitting!

 $\Delta \log(L^{\max}) = \sum \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$ bins maximum-likelihood estimates for the Δm2's and angles using ÂН significance (50% chance) both data and constraints from global fit. nb: constraints are different for H=IH and H=NH # sigmas Perfect muon direction Uncertainty on the mixing parameters Conservative as a function of the exposure assumed efficiency Eres = 25%, 1-100 GeVE (GeV) Mton x yr $\sigma(\Delta m_{large}^2)$ (eV²) $\sigma(\theta_{23})$ (°) $\sigma(\theta_{13})$ (°) 3 0(now)8.0e-51.30.455 years with 4.3e-050.421 0.613 Mton 2 52.3e-050.320.44=10.0% 101.8e-050.220.39=20.0% =25.0% 201.4e-050.160.39σ₌ =30.0% 30 1.2e-050.130.3720 exposure (Mton*vears)

Studies of systematics

A Neutrino beam to ORCA? I

Muon counting experiment - Optimum 6-8 GeV 6000-8000 km but beam inclination
 Lujan-Peschard et al, Eur. Phys. J. C (2013) 73:2439 ; Tang & Winter, JHEP 1202 (2012) 028

	Fermilab	CERN	J-Parc
South-Pole	l I 600 km	I I 800 km	l I 400 km
Sicily	7800 km	1200 km	9100 km
Baikal Lake	8700 km	6300 km	3300 km

NUMI beam rescaled to 7800 km

 \rightarrow 9 σ separation on purely statistical ground in one year

A Neutrino beam to ORCA? II

 Electron counting experiment - Protvino-ORCA L=2588 km, beam inclined by 11.7° (3° off-axis from Fréjus Underground laboratory)

A Neutrino beam to ORCA? III

- Electron counting experiment Protvino-ORCA L=2588 km, beam inclined by 11.7°
- Vertex inside ORCA reference detector
- Flavor misidentification probability based on C2GT project
- Event rates for 1.5x10²¹ pot (3 years)

Channel	Tracks NH	Tracks IH	Cascades NH	Cascades IH
No oscil	26315			
Signal	8990	8735	1134-1547	350-519
Misreco	232-329	47-79	1326	1280
$ u_{ au}$	324-332	351 - 355	978-998	1057 - 1068
NC	1092	1092	3640	3640
BG Total	1655 - 1745	1494-1522	5944 - 5964	5977 - 5988
Total	10645-10736	10229-10257	7099-7491	6338-6496

7 σ stat. separation 3 σ with 3-4% sys

No assumption on energy reconstruction

We would be happy to investigate further possible synergies in case of a LAr TPC in the Fréjus underground laboratory, as an indication on the MH may help for the measurement of δ_{CP} by LBNO

INO: India-based Neutrino Observatory

- 1.9 km access tunnel
- Indian collab (~20 institutes) + Hawaii Univ (USA)
- Several other experiments when operational ($\beta\beta O_{v}$, DM)

CERN-INO: ~7300 km JPARC-INO: ~6500 km RAL-INO:~7600 magic baseline ~ 7500 km FNAL-INO: second magic

Current Status:

- Fencing work started for facilities near portal and Madurai Center for HE Physics
- Waiting for full project approval by Indian Government

The INO-ICAL detector

- RPCs: help from Industry expected
- Electronics: ASIC (2nd batch being tested)
 and DAQ under development

✓ 50Kton Fe-RPC Detectors
 ✓ # of layers = 140
 ✓ Fe thickness = 5.6 cm
 ✓ Magnetic Field ~ 1.3T
 ✓ # of RPCs ~ 27K
 ✓ # of channels ~ 3.6M

[NB: Slightly different numbers exist]

2m x 2m glass RPC test stand

Cosmic –ray tracks are seen...

• Magnet: Prototype running at VECC Engineering module (800 ton) will be constructed by 2014.

Mass Hierarchy Discrimination

Expected performances are a bit worse for IH

Further improvements expected by adding hadron events arXiv:1306.1423v1

INO + Other experiments

Ghosh, Thakore & Choubey, arXiv:1212.1305

Blennow & Schwetz, JHEP 1208 (2012) 058, Erratum-ibid. 1211 (2012) 098

The Liquid Ar TPC detectors

- First achievements with ICARUS (760 tons at LNGS)
 → Proof of technology.
- Excellent particle identification with low threshold (MeV)
- Proposed detectors (LBNO/E):
 - staged approach up to 100 kton
 - Single (LBNE) double (LBNO) phase
 - Sensitive to muons and electrons
 - Hadronic component can me measured
- Atmospheric neutrino studies
 - Tau neutrino appearance
 - Discrimination between $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{s}$ from upward/downward asymmetry
 - Mass hierachy and octant of θ23
 - A. Stahl et al, LBNO, SPSC-EOI-007 (2012)
 - C. Adams et al, LBNE, arXiv:1307.7335

Detectors need to be buried deep underground

Mass hierarchy & octant with Lar TPCs

Requires very large detectors

Magnetized LAr-TPC?

Sensitivity to mass hierarchy require charge identification to compensate low mass → Magnetization?

U. Barger et al, Phys.Rev.Lett.109:091801,2012

100% CID for muons and 20% for electrons in the energy range 1-5 GeV

 $\sigma_{E_e} = \sigma_{E_{\mu}} = 0.01; \quad \sigma_{E_{had}} = \sqrt{(0.15)^2 / E_{had} + (0.03)^2} \qquad \sigma_{\theta_{\nu e}} = 2.8^\circ; \quad \sigma_{\theta_{\nu \mu}} = 3.2^\circ$

(Results shown for assumed NH)

Summary

- Atmospheric Neutrinos have still a major role to play for precision measurements and determination of unknown parameters such as the mass hierarchy.
- Proposed detectors include Iron Calorimeter, Liquid Argon and Cherenkov detectors. None of these projects being firmly funded.
- Low energy (GeV) extensions of Neutrino Telescopes may be faster and cheaper than other alternatives...
- ...but challenging, as systematics must be carefully controlled. Key parameters are the size of the detector as well as the energy and angle resolutions.
- Synergies/Combination with LBL/ reactor experiments may provide the first high significance MH determination...

A recent timeline... ... but already outdated...