The GLACIER Double Phase Liquid Argon TPC

Marco Zito Irfu/SPP, CEA-Saclay

ICFA European Town Meeting, Paris January 9, 2014

OF LA RECHERCHE À L'INDUSTR

Outline

- Technological challenges of the PMNS study
- The GLACIER concept
- Proof of principle from prototypes
- LAGUNA and LAGUNA-LBNO: engineering studies towards construction plans
- Next steps

See also these related talks: T. Patzak on LBNO and D. Autiero on the WA105 program

The content of the talk is based on the results of the LAGUNA and LAGUNA-LBNO design studies (EU, FP7)

Neutrino oscillation and the study of the PMNS model

28 events (4.9+-0.6 bck) Conclusive observation of $v_{\mu} \rightarrow v_{e}$ Sensitivity to non leading terms, including CPV and MH, requires a larger far detector, higher beam power and improved detection technology

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx \sin^{2} \theta_{23} \frac{\sin^{2} 2 \theta_{13}}{(\hat{A} - 1)^{2}} \sin^{2} ((\hat{A} - 1)\Delta) \\ &+ \alpha \frac{8 J_{CP}}{\hat{A}(1 - \hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1 - \hat{A})\Delta) \\ &+ \alpha \frac{8 I_{CP}}{\hat{A}(1 - \hat{A})} \cos(\Delta) \sin(\hat{A}\Delta) \sin((1 - \hat{A})\Delta) \\ &+ \alpha^{2} \frac{\cos^{2} \theta_{23} \sin^{2} \theta_{12}}{\hat{A}^{2}} \sin^{2} (\hat{A}\Delta) \end{split}$$

3

The two strategies towards CP violation

- Short baseline (~100-300 km), lower energy (<1 GeV), narrow beam, large Water Cherenkov (~500 kT). Concentrates on $\nu/\overline{\nu}$ asymmetry, "counting" experiment → HyperKamiokande
- Longer baseline (>2000 km), higher energy (>1 GeV), wide beam, Liquid Argon TPC. All final states accessible, E/L oscillation pattern and second maximum-> LAGUNA-LBNO

Probing the PMNS model

To fully probe the PMNS paradigm, a new detector technology capable of covering the 0.1-10 GeV range, with sensitivity to the three neutrino flavors is required

Towards a "bubble chamber" for neutrino interactions

Excellent energy resolution and tracking performance. Efficient background rejection High granularity: ~0.05 cm in drift direction, 3mm in transverse direction Very high signal-to-noise (>100) thanks to amplification in gas. Adjustable energy threshold=>sensitivity from sub-GeV to multi-GeV

The GLACIER concept

Giant Liquid Argon Charge Imaging expERiment

- 1) Large single vessel for the Liquid Argon containment using industrial standards
- 2) Double phase TPC
- 3) Long drift distance
- 4) With amplification in the gaseous phase
- 5) Using Micro Pattern Gas Detectors

Liquid Argon TPC: the double phase concept

Anode LEM Gas Liquid Cathode **PMT**

Charge collection on 2D anode Charge amplification in the gaseous phase using LEM

E drift Target for neutrino interactions: 20-50 kt

PMT for T0 determination

The GLACIER detector

сw

	DOKT	FORT
	20K1	50KT
Liquid argon density at 1.2 bar [T/m3]	1.38346	
Full LAr height [m]	22	
Instrumented LAr height	20	
[m]		
Pressure on the bottom due to LAr	30.4 (= 0.3 MPa = 3 bar)	
[T/m2]		
Vessel diameter [m] 37	37	55
	37	76
Vessel base surface [m2]	1'075.2	2'375.8
		4'536.5
Instrumented LAr area (percentage)	824 (77%)	1'845 (78%)
[m2]	(76.6%)	3'634 (80.1%)
Liquid argon volume [m3]	23'654.6	52'268.2
		99'802.1
Instrumented LAr mass [KT]	22.799	51.299
		100.550
Charge readout square panels (1m×1m	804	1'824
option)		14'456
Charge readout triangular panels	40	
(0.5m2)		60
Charge readout square panels (4m×4m		
	40	104
option) Charge readout triangular papels (2m2)	20	16
Number of signal feed-throughs (666	20	1'028
	, 416	1020
ch/FT)		1'872
Number of PMTs (1m × 1m option)	~800	~1.820
		909
Number of PMTs (1.2m × 1.2m option)		~1'288
Number of PMTs (2m × 2m option)	~200	~450
Number of field shaping rings	100	
Vertical spacing (heart to heart distance)	200	
of field shaping rings [mm]		

Anode modular structure

10

Gas amplification

11

Progress with MicroPattern Gas Detectors (MPGD)

The GLACIER concept is fully supported by the recent progress in the MPGD technology:

- T2K near detector TPC, 10m**2 paved with Micromegas
- Large MPGD (2m**2) (Rui De Oliveira workshop at CERN, RD51)
- ATLAS new Small wheel (~1000 m**2)

The path toward GLACIER

Validation of the concept

The 40x76 cm² prototype at CERN after several years of experience with smaller devices A. Badertscher et al. JINST 8 (2013)P04012,

Results with the 40x76 cm² prototype

Engineering studies of the GLACIER detector

- LAGUNA (2008-2011) : feasibility of large underground caverns in several European sites
- LAGUNA-LBNO (2011-2014): engineering solutions for the underground infrastructure, the tank and the detector including the Argon handling. Construction plans and detailed costing as main deliverable to EU

Designing an underground detector

- We recognized early on the absolute need to design the detector as an <u>underground</u> infrastructure from day 1
- Strong coupling of the detector with the cavern, its access and the whole laboratory design
- Need to take into account a variety of aspects including: logistics, underground construction, safety hazards, Argon handling ...

The underground infrastructure

 The design has been conducted including: rock mechanical aspects (the large cavern will have a large 65m span), ancillary spaces, accesses, shafts. Additional site investigation ongoing in Pyhasalmi.

19

Industrial technologies for the tank

- Study of the tank completed, including costing and construction plans.
- Both a steel tank and a membrane tank are feasible. The membrane tank is the favored option.

The TPC structure

 Includes and the anode-LEM-grid structure, the field cage and the cathode

CATHODE CONSTRUCTION - TECHNICAL

Summary of the Proposed Solution

- Design almost completed
- Includes the interplay of the tank construction, modularity, cleanliness requirements

LBNO: design and costing

The LBNO collaboration is nearing completion of an EU-funded design study, and the detailed engineering and full costing of LBNO Pilot, Phase 1 (20kton LAr) and Phase 2 (20+50kton) at Pyhäsalmi will be delivered in June 2014.

Conclusions

- The GLACIER double phase liquid argon TPC has been proposed to serve as the far detector in a comprehensive study of the PMNS paradigm
- Proof of principle and invaluable experience with several prototypes
- Extensive engineering studies towards the construction plans
- Looking forward to the WA105 large demonstrator and beam test data

GLACIER: references

2003: the GLACIER concept. A. Rubbia hep-ph/0402110.

2008-2011: Proof of principle with 10x10 cm² double phase LAr LEM-TPC prototype: arXiv:0811.3384 NIM A641 (2011) p.48-57

2011: First successful operation of a 40x80 cm² device

JINST 7 (2012) P08026 JINST 8 (2013) P04012

2012-2013: further R&D towards final, simplified charge readout for GLACIER