THE INTERNATIONAL DESIGN STUDY FOR THE NEUTRIND FACTORY

Magnetized Iron Neutrino Detector (MIND)

ICFA Neutrino European Meeting APC, Paris Diderot University

Paul Soler, 8-10 January 2013

Magnetized Iron Neutrino Detectors

Distinguished history of "magnetized iron neutrino detectors"

- CERN-Dortmund-Heidelberg-Saclay-Warsaw (CDHSW): 1250 tons, 1976-84
- CERN-Hamburg-Rome-Moscow (CHARM) and CHARM-II detectors had marble (180 tons) and glass (692 ton) targets but with magnetized iron spectrometer for muon momentum

Magnetized Iron Neutrino Detectors

- Distinguished history of "magnetized iron neutrino detectors"
 - CalTech-Columbia-Fermilab-Rochester (CCFR) (1982-88) and NuTeV (1996-97): 695 tons
 - MINOS: two detectors (980 tons and 5.4 kton) from 2005 onwards

CCFR/NuTeV

MINOS

Advantages/disadvantages

- Why do we still consider large iron detectors?
- Is it not a technology of the 1970s?
- Main advantages:
 - Magnetisation: charge separation/momentum measurement
 - Good muon identification
 - Large mass in reasonable volume (ρ =7.87 ton/m³)
 - Good ν_{μ} CC identification and NC background reduction
- Main disadvantages:
 - Generally worse spatial resolution
 - Large multiple scattering, increasing momentum resolution
 - High energy threshold for muon identification (~1 GeV)
 - Poor electron identification

Advent of neutrino factories

- Why do we still consider large iron detectors?
- Large magnetized iron detectors became relevant for neutrino factories due to the need to identify sign of muon with high efficiency ("wrong-sign muon" signature)
- Golden measurements" paper highlighted power of an iron neutrino detector at a neutrino factory for CP violation

hep-ph/0002108

Nucl Phys B 579 (2000) 17-55

Golden measurements at a neutrino factory

A. Cervera^{a,1}, A. Donini^{b,2}, M.B. Gavela^{b,3}, J.J. Gomez Cádenas^{a,4}, P. Hernández^{c,5}, O. Mena^{b,6}, S. Rigolin^{d,7}

MIND at a Neutrino Factory

MIND at a Neutrino Factory

- Magnetised Iron Neutrino Detector (MIND): 100 kton
- Octagonal plates and toroidal field (as in MINOS)
- Engineering metal plates

Bross, Wands (FNAL)

Magnetic field 1.2-2.2 T delivered by 100 kA current

> SMN =-.428969 SMX =2.534 -.428969 -.099759 .229451 .558661 .887872 1.217 1.546 1.876

2.205

ICFA Neutrino Meeting, Paris, January 2014

Detector readout

- Extruded scintillator:
 - Mature technology
 - Enough to achieve σ ~1 cm
 - Read out with Kuraray wavelength shifting fibre
- Photon detector:
 - SiPMT (or MPPC) is also now becoming a mature technology
 - Insensitive to magnetic fields
 - Has already been used extensively for T2K ND280 detector

How to teach an old dog new tricks!

Scintillator and WLS fibre

SiPMT

Neutrino Factory MIND analysis

- GENIE generator, GEANT4 simulation and event reconstruction
- Multi-variate analysis (MVA) performed with five variables, tuned for best value of sin²20₁₃~0.1
- Boosted Decision Tree (BDT) and K-Nearest Neighbour (KNN) give best performance of MVA methods
- Migration matrices give 2D response of true vs recon energy

MIND CP sensitivities

- □ Final sensitivities with GLoBES (1.4% signal and 20% back syst.)
- **Precision** in δ depends on systematic errors
- Neutrino factory offers best facility for controlling systematic errors and has best sensitivity out of all possible future facilities

NF yields $\Delta \delta \sim 4^{\circ}$ -5°, regardless of value of δ

MIND CP sensitivities

• Facility can be staged: precision as function of exposure:

ICFA Neutrino Meeting, Paris, January 2014

nuSTORM facility: muon decay ring (3.8 GeV) with no cooling

- Physics goals:
 - Resolve short baseline large Δm^2 light sterile neutrino evidence
 - Measure neutrino cross-sections (including ν_{e} cross-sections) with unprecedented precision
 - Provide accelerator R&D facility for 6D muon cooling experiment
- □ For sterile neutrino search: two magnetised iron detectors ("SuperBIND") for $v_e \rightarrow v_\mu$ appearance and $\overline{v}_\mu \rightarrow \overline{v}_\mu$ disappearance search

• The $v_e \rightarrow v_{\mu}$ appearance probability from $\mu^+ \rightarrow e^+ + \overline{v}_{\mu} + v_e$ $P_{e\mu} = \sin^2 \theta_{e\mu} \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \qquad \sin^2 \theta_{e\mu} = 4 \left| U_{e4} \right|^2 \left| U_{\mu4} \right|^2$

- Near detector ~ 30 m, far detector ~2 km
- SuperBIND: iron slabs 2 cm thick, scintillator 2×1 cm thick
- Multi-variate analysis in both appearance and disappearance

- Neutrino appearance efficiency: ~35% for 10⁻⁵ background acceptance using Boosted Decision Tree (BDT) analysis
 - Expected 73 events with 6 events background (10²¹ pot)

Neutrino appearance efficiency: ~35% for 10⁻⁵ background acceptance using Boosted Decision Tree (BDT) analysis

Expected 73 events with 6 events background (10²¹ pot)

Global fit from: J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz, 392 JHEP 1305, 050 (2013) ICFA Neutrino Meeting, Paris, January 2014 17

Neutrino disappearance efficiency: ~60% for 10⁻² background

$$P_{\mu\mu} = 1 - \sin^2 \theta_{\mu\mu} \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \qquad \sin^2 \theta_{\mu\mu} = 4 \left| U_{\mu4} \right|^2 \left(1 - \left| U_{\mu4} \right|^2 \right)$$

Combination of two modes allows to test sterile neutrino scenarios and set limits on $|U_{\mu4}|^2$ and $|U_{e4}|^2$

AIDA Test Beam

- Neutrino Factory and nuSTORM analyses rely on GENIE and GEANT4 simulations of interactions and detector
- We need to test assumptions of simulations using test beams
- LAGUNA-LBNO detector also assumes a Magnetized Iron Detector for muon momentum measurement

AIDA Test Beam

- AIDA (Advanced Infrastructures for Detectors at Accelerators):
 - Develop a new low-energy test beam facility at CERN
 - Build and develop a Totally Active Scintillator Detector (TASD) and Magnetized Iron Neutrino Detector (MIND) for neutrino experiments

AIDA Test Beam

GEANT4 simulations of different MIND configurations

GEANT4 simulations of different MIND configurations
π⁺ charge identification efficiency

SPS Beam Request for MIND

- Plans to test MIND and TASD prototypes (2015, €400k) presented to SPS committee (June 2013). Formal request for SPS beam time is being finalized for submission.
- Recent study (Nov 2013) under AIDA WP8.2.1 reported feasibility of very low energy beam layout at existing H8 beam line in North Area at CERN (e, μ, π, p, E < 9 GeV/c)

Conclusions

- Magnetized Iron Neutrino Detectors (MIND) are most effective way to provide magnetic field for large neutrino experiments
- Recent studies have shown that:
 - MIND at a Neutrino Factory offers best chance to discover neutrino CP violation
 - MIND at nuSTORM offers best available sensitivity for light sterile neutrino search
 - MIND at LBNO supplies muon catcher for mass hierarchy and first level CP violation search
- Robust detector designs are available, some R&D required to:
 - Track progress in technologies (ie. photosensors, electronics, ...)
 - Refine costing models
 - Benchmark assumptions made in the simulations
- AIDA low energy test beam facility at CERN for detector R&D and performance studies