

Caractérisation et Qualification d'un Dosimètre Personnel Électronique Neutrons

Encadrement: D.Husson*, S.Higueret (A.Nachab, A.Sellam)

Contexte: dosimétrie opérationnelle N

L'existant (IPHC): chips AlphaRad2 et 3

Ce qui reste à faire: a) système complet b) tests en sources + simulations Qualification

International norm IEC 1323, 1995

→ Neutron electronic dosemeters mandatory

EVIDOS (Eval. of Individual DOSimetry) EU survey: 2001-2005

3/36

Electronic Personal Dosimetry

Requirements:

(→ alarm @ 20 mSv..)

- − Low P consumption \rightarrow 24h portability
- − Cheap (\rightarrow 65000 workers in UE)
- Smartness (n/γ discrim. OK @ 1/1 *: what about 1/10 or 1/100..?)
- Growing demand:
- a) UE recommandations
- b) dismantling is just starting..
- c) cyclotrons everywhere !

<u>* Thèse Ying Zhang (19/09/2012)</u>

Detection of <u>charged</u> particles \rightarrow neutron converters needed !

Wide energy range \rightarrow two converters of different nature

D.Husson - RaMsEs - Thèse 2014

AlphaRad1: dedicated chip for direct α detection (2006)

 32×64 diodes in parallel

with a single output

High detection efficiency for

5 MeV alpha particles (~100%)

\rightarrow \rightarrow Fast counting on a large area

achieved without pixellization

Drawbacks

>Equivalent noise charge (ENC) ~14 000 e⁻

 \rightarrow too high for fast neutrons (threshold 50 000 e⁻)

≻Power consumption ~10 mW

 \rightarrow needs to be reduced !!

New chip dedicated to a neutron dosemeter

D.Husson - RaMsEs - Thèse 2014

AlphaRad2 (2012)

Y. ZHANG, Ph.D. Defense. Sep 19, 2012

Chip AlphaRad3 (XFAB 0.35 μm)

Measurements with Am alpha source at different distances

X axis – Comparator threshold voltage

Yaxis – Counter value

Experimental tests (LMDN Cadarache)

Van Gogh: AmBe source (370 GBq), ²⁵²Cf

Fast n + γ 4.438 MeV fluences well defined(4%)

AMANDE facility : mono-E neutrons (3 keV-20 MeV)

IsEs - Thèse 2014

Simulation

-MCNPX

-(+ comparaisons!!)

Discrim n/γ : Simulations (Thèse M.Vanstalle)

Deposed energy in CMOS sensor calculated by MCNPX 2.6f simulation [nps = 1e6 , d_{source} = 15 cm]

Deposed energy in CMOS sensor calculated by MCNPX 2.6f simulation [nps = 1e6 , d source = 15 cm]

...and real life !

Déjà réalisé:

- Design optimisé de l'électronique intégrée: chip AlphaRad2 (thèse Ying Zhang).
- Simulations+mesure n rapides+lents
 +transparence γ, MimoV (thèse Marie Vanstalle)
- Sensibilité: ~10 μSv (!)
- Design AlphaRad3, techno XFAB + ouvertures SiO₂ face avant (Maciej Kachel)
- Système complet et autonome (PCB multi-chip) +ACQ mars 2013: M.K.+ S.Higueret
- Réponse α et AmBe: juill13 (stge M2 A.Torres).

Finalisation du projet (thèse)...

- Réponse n mono-E, fast+slow et sur spectres étendus
 - Influence n lents diffusés
- Réponse angulaire
- Discri n / γ dans combinaisons artificielles de sources mixtes (1/10, 1/100, 1/1000)
- Influence T°; radhardness; blindage EM, ...

Fantômes