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The questions list for Cosmology

what is Inflation?

what is the nature of dark matter?

what is the universe made of?

what is the nature of dark energy?

68.3% 26.8%

4.9%

reference model = ? ΛCDM
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Where to search for answers
The Cosmic Microwave Background (CMB)

Planck

Primordial quantum fluctuations!

Large scale structures (LSS)

{
CMB Telescopes LSS galaxy surveys

New observational data from CMB and galaxy surveys allow for precision 
tests of ΛCDM model and beyond!
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Outline

•  Probing late time evolution and primordial physics with the 
Cosmic Microwave Background (CMB) non-Gaussianity (NG)

•  CMB, Large scale structure and initial conditions

Planck Data analysis and future prospect

Primordial and “late time” non-Gaussian signals 

Constraining the nature of primordial perturbations beyond the ΛCDM model

Implications for CMB and LSS 

Why CMB non-Gaussianity

Euclid+Planck forecasts
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Why looking for non-Gaussianity (NG) in the CMB?
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STANDARD INFLATIONARY MODEL predicts GAUSSIAN CMB anisotropies

DIFFERENT SCENARIO
FOR GENERATION

PRIMORDIAL 
PERTURBATIONS?

If non-Gaussian signal in the CMB

PRIMORDIAL NG

“LATE-TIME” NG

The CMB non-Gaussianity is a very high precision test 
of standard inflation!

Complementary to the search for CMB B-modes and power spectrum analysis 
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Different NG phenomena leave different imprints in the CMB sky which can 
be used to constrain the physical mechanism behind them.

Non-GaussianityNon-linear behavior

AMPLITUDE of the quadratic non-linear correction

Salopek & Bond 1990, Gangui et al. 1994
Verde et al. 2000, Komatsu & Spergel 2001

Small for standard slow roll inflation, large for models e.g. multi field inflation

Non-linear gravitational potential perturbations

Primordial non-Gaussianity: an example



The “late-time” CMB non-Gaussianity

Direct probe of the action of Dark Energy on the evolution of structures

The CMB lensing-ISW non-Gaussianity 

Deflection: LENSING
ISW=Integrated Sachs 

Wolfe

Uncorrelated CMB photons

correlated!

z<2 Dark Energy
stretches the gravitational potentials 

LENSING-ISW

Non-gaussian signal in the CMB

In this work we will concentrate on the cross correlation of the CMB lensing
signal with the secondary anisotropies arising from the Rees-Sciama e⌃ect. As
already pointed out in previous works [?], [1], [?] the joined study of these phe-
nomena through the CMB bispectrum is a very powerful tool to better under-
stand linear and non-linear growth of structures, to break degeneracies between
parameters arising in a power spectrum only analisys, to possibly constrain Dark
Energy equation of state or models beyond the standard ⇤CDM and, mainly,
to disentangle primordial from secondary source of Non-Gaussianity, which is
an extreme important and hot topic of modern cosmology.

Regarding this last issue, it is known that lensing alone does not produce
a detectable three-point correlation function [REFERENCES], however its cor-
relation with secondary anisotropies from low redshift e⌃ects can produce an
observable non-gaussian feature/signature.

Both, lensing and the RS e⌃ect, (arise from/are due to) are in fact related to
the gravitational potential and thus are correlated, leading to a non-vanishing
bispectrum signal. [References], .

4.4.1 The Rees-Sciama e�ect

Once left the last scattering surface, the CMB photons experience blue and red
shifting when passing thorough the gravitational potential wells of the forming
matter structures. In a flat ⇧ = 1 background universe, the gravitational poten-
tial perturbations do not change with time/// keep constant during the matter
dominated linear regime, so that such a contribution is zero, as the photons will
be red and blue shifted by the same amount. Recall that the linear regime in
the evolution of cosmological perturbations is defined as the epoch when per-
turbations satisfy both: ��

� ⌅ 1 and ⌅⌅ 1, being ��
� the density perturbation

and ⌅ the gravitational potential fluctuation field against a smooth background
.

However non-static gravitational potentials ⌅̇ ⌃= 0 can leave their imprint
oh the CMB photons traveling from the last scattering to us. There are two
main phenomena that can cause the gravitational potential to vary with time
and thus secondary CMB temperature anisotropies from late-time gravitational
e⌃ects :

• Non-linear growth of density fluctuations ( ��
� ⇤ 1) along the photons

path.

• Dynamical e⌃ect of ⇤ or Dark Energy (DE) on the rate of growth of
structures which leads to a late time decay of the gravitational potential.

At linear order such e⌃ect is called Integrated Sachs Wolfe e⌃ect (ISW) [2],
while it is called Rees-Sciama e⌃ect (RS) [3] in the non-linear regime. The RS,
being a second order e⌃ect, is smaller than the CMB signal at all scales with
�T
T ⇧ 10�7. –¿ references

Quantitatively the net temperature fluctuations of the CMB black body
spectrum induced by the RS e⌃ect can be written as:

⇥RS(n̂) ⇥ �TRS

T
(n̂) = 2

�
dr

⇤

⇤�
⌅NL(�, n̂r), (4.25)

11

Credit: ESA due to the cross correlation two effects:

ISW - CMB photon red/blue shifted: dark energy stretches the gravitational 
potential wells

LENSING - CMB photon deflected by the forming structures
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The lensing-ISW biases the primordial NG

 BIAS to the primordial signal: ΔfNL of order 10, bigger than 
Planck 1-σ error on primordial fNL 

Contamination of primordial local non-Gaussianity due to the late time signal

Mangilli&Verde 2009

Δ
fN

L

BIAS:
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3-points correlation function

Angular bispectrum

Appendix A

Bispectrum statistics
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Bispectrum statistics
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2-points correlation function

Angular power spectrum

How look for non-Gaussianity in the CMB

Non-Gaussianity? More information! 
Look at the higher order statistics 

beyond the power spectrum 

Anna Mangilli (IAP) - LAPTH 21 Nov 2013

Look at 
triangles in the 

CMB!



Different mechanisms, different amplitudes and shapes!

Squeezed shape

‣ Multi-fields inflation
‣ Ekpyrotic/cyclic models
‣Curvaton isocurvature model

EQUILATERAL shape ORTHOGONAL shape

‣ non-canonical kinetic term
‣Dirac-Born-Infield (DBI) inflation
‣ Ghost inflation

‣ non-canonical kinetic term
‣higher derivatives interactions

credit: Planck Collaboration

‣ Lensing-ISW correlation

Primordial (local type):

Non-primordial:
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{SHAPE

B(`1, `2, `3) = fNLF (`1, `2, `3)



Planck data analysis and results
on CMB non-Gaussianity

On behalf of the Planck collaboration

CITA – ICAT

UNIVERSITÀ DEGLI STUDI
DI MILANO 

ABabcdfghiejkl

Anna Mangilli (IAP) - LAPTH 21 Nov 2013



The Planck experiment

Anna Mangilli (IAP) - LAPTH 21 Nov 2013

Planck is an ESA 
mission which 

observed the sky in 
9 frequency bands 

from 30 to 857 GHz 
with an 

unprecedented 
sensitivity

Component separation 
to remove foregrounds.

30GHz

100GHz 143GHz 217GHz

70GHz44GHz

353GHz 545GHz 857GHz

Cleaned Planck CMB map



The Planck bispectrum

SMICA SEVEMNILC

Robust to foreground cleaning
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Constraints on fNL from Planck data

No evidence of primordial NG in 
Planck Data

Local squeezed

Equilateral

Orthogonal
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Planck Collaboration 2013

Mangilli&Verde 2009

Lensing-ISW bias

x 10

Orthogonal

Equilateral

Local 
squeezed

Lensing-ISW



Planck results on the lensing-ISW 

Planck finds evidence for the first time of the 
Lensing-ISW signal at 2.7σ

Consistent results from all estimators and data maps with different component 
separation methods  

Bispectrum template

Planck data (SMICA)

Specific estimators calibrated 
for the L-ISW signalAmplitude of the lensing-ISW bispectrum 

Expected amplitude LCDM

=1
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Mangilli et. al 2013
Planck Collaboration 2013



fnl_local WMAP9=37+/-20

WMAP

PLANCK
Bennet et al. 2012

Planck high resolution!

SMICA

Primordial non-Gaussianity: Local shape

Lensing-ISW NOT subtracted

Consistency with WMAP

The Planck collaboration 2013
fnl_local Planck 2013 =9.8+/-5.8
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Polarization forecasts

 Liguori et al. 2010, Baumann et al. 2008

PLANCK T+Pol
1-
σ 

1-
σ 
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 Lewis et al. 2011

T+Pol ～ 15% improvement

For primordial non-Gaussianity:

For lensing-ISW non-Gaussianity:

PLANCK T only



CMB non-Gaussianity: TAKE AWAY message!

• Non-Gaussianity in the CMB: powerful tool to constrain 
primordial physics and Dark Energy (late-time lensing-ISW 

bispectrum)

• Planck constrained for the first time CMB Non-Gaussianity with 
unprecedented precision! 

Planck finds evidence for the first time of the Integrated-Sachs-Wolfe-
lensing bispectrum. Signal compatible with the LCDM scenario

Planck favors the simplest models for inflation

•  Future prospects: 
Planck polarization data 2014 release! 

Lensing-ISW bispectrum: new observable to be used to constrain 
dark energy properties.
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Outline
•  Probing late time evolution and primordial physics with the 

Cosmic Microwave Background (CMB) non-Gaussianity (NG)

•  CMB, Large scale structure and initial conditions

Planck Data analysis and future prospect

Primordial and “late time” non-Gaussian signals 

Constraining the nature of primordial perturbations beyond the ΛCDM model

Implications for CMB and LSS 

Why CMB non-Gaussianity

Euclid+Planck forecasts
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Standard model for structure formation

Cosmic inflation: Origin of the 
perturbations

standard INFLATION: single scalar field, the inflaton, drives accelerated 
expansion and produce primordial perturbations

Primordial perturbations 
imprinted in the CMB

Large scale structure of the 
Universe

Gravitational
instability
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Curvature adiabatic perturbation 

Isocurvature entropy perturbation 

Standard Inflationary dynamics implies that constant 
density perturbations are present initially. Perturbations 

in all components are spatially homogeneous. 

 No initial curvature perturbations. Fluctuation in 
number density between different components. The 
initial density fluctuations are created from stresses 
in the radiation-matter component. E.g. Cold Dark 

Matter and Neutrinos Isocurvature modes.

What is the nature of the primordial fluctuations?

Cosmic inflation: Origin of the 
perturbations

New observational data from CMB and galaxy surveys offers precision 
tests of the nature of the primordial perturbations
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BARYON ACOUSTIC OSCILLATIONS (BAO) = sound waves

DM

photon-baryon fluid

Dark matter + baryon and photons tightly coupled

Photon and matter decoupling: CMB

BAO froze at decoupling leaving an imprint in 
the CMB: the characteristic peak structure in 

the CMB power spectrum!  

BAO physical scale = sound horizon at 
decoupling rs: distance that the sound waves 

have traveled before the epoch of recombination
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The Planck collaboration 2013



✓  Allowing for isocurvature 
modes introduces new 

degeneracies in the parameters 
space which can compromise 

accuracy of parameters constraints 
(systematic shifts and bias)

Pure isocurvature ruled out but ...

Isocurvature/adiabatic ratio 
parameter 

34 Planck Collaboration: Constraints on inflation

Model �iso(klow) �iso(kmid) �iso(khigh) ↵(2,2500)
RR ↵(2,2500)

II ↵(2,2500)
RI �n �2� lnLmax

General model:
CDM isocurvature 0.075 0.39 0.60 [0.98:1.07] 0.039 [-0.093:0.014] 4 -4.6
ND isocurvature 0.27 0.27 0.32 [0.99:1.09] 0.093 [-0.18:0] 4 -4.2
NV isocurvature 0.18 0.14 0.17 [0.96:1.05] 0.068 [-0.090:0.026] 4 -2.5

Special CDM isocurvature cases:
Uncorrelated, nII = 1, (“axion”) 0.036 0.039 0.040 [0.98:1] 0.016 – 1 0
Fully correlated, nII = nRR, (“curvaton”) 0.0025 0.0025 0.0025 [0.97:1] 0.0011 [0:0.028] 1 0
Fully anti-correlated, nII = nRR 0.0087 0.0087 0.0087 [1:1.06] 0.0046 [-0.067:0] 1 -1.3

Table 12. Isocurvature mode constraints. For each model, we report the 95% CL upper bound on the fractional primordial contribu-
tion of isocurvature modes at three co-moving wavenumbers (klow = 0.002 Mpc�1, kmid = 0.05 Mpc�1, and khigh = 0.10 Mpc�1), and
the 95% CL bounds on the fractional contribution ↵II and ↵RI to the total CMB temperature anisotropy in the range 2  `  2500.
We also report �2� lnLmax for the best-fitting model in each case, relative to the best-fit 6-parameter ⇤CDM model, with the
number of additional parameters �n. In the Gaussian approximation, �2� lnLmax corresponds to ��2. The general models have six
parameters that specify the primordial correlation matrix at two scales k1 and k2, thus allowing all spectral indices to vary (so, four
parameters more than the pure adiabatic model).

cant amount of anticorrelated isocurvature modes, leading to a
reduction of amplitude of the Sachs-Wolfe plateau and to a de-
crease of the effective �2 by up to 4.618. This situation explains
the rather loose bounds on the derived parameter ↵II(2, 20), as
shown in Fig. 23.

A comparison ofP1
II andP2

II shows that best-fitting models
have an isocurvature spectral index nII close to 1.7 for CDI, 1.1
for NDI and 1.0 for NVI modes.

For CDI and NDI, the amplitude of acoustic peaks quickly
decreases with increasing `, so the constraints are entirely driven
by small `’s. Since the same value of the primordial amplitude
P(1)
II leads to different plateau amplitudes for the two isocurva-

ture models (see Fig. 21), the bounds on P(1)
II and P(1)

RI are con-
sistently stronger for CDI than for NDI. For NVI, the acous-
tic peak amplitude is larger than the plateau amplitude. In NVI
models, the data cannot allow for a too large amplitude of corre-
lated isocurvature modes at small `, because the total spectrum
would be distorted at larger `. This possibility is strongly dis-
favoured by the data, which is consistent with the peak location
predicted by a pure adiabatic model. Hence in the NVI case we
obtain slightly stronger bounds and a smaller reduction of the
effective �2.

The fact that the data prefer models with a significant con-
tribution from CDI or NDI modes should be interpreted with
care. The detection of a shift in the phase of acoustic oscilla-
tions would bring unambigous evidence in favour of isocurva-
ture modes. With Planck data, we are not in this situation. The
evidence is driven by a small deficit of amplitude in the Sachs-
Wolfe plateau, that could have several different possible explana-
tions (such as a deficit in the large-scale primordial power spec-
trum, as already seen in the previous sections). However, multi-
field inflationary scenarios can produce the mixture of curvature
and isocurvature fluctuations which we have found to provide a
good fit to the Planck data.

18 For the three general models, the posterior distribution is actually
multimodal. Here we are referring to models contributing to the main
peak in the posterior, with the highest maximum likelihood. There is
another peak with a smaller maximum likelihood, appearing in Fig. 23
as a small bump for positive values of the cross-correlation amplitude.
In this paper, we do not carry out a separate investigation for models
contributing to this secondary peak.

10.3. Special cases

The six-parameter models of the previous subsection, includ-
ing one isocurvature mode and the adiabatic mode, make no as-
sumptions about the spectral indices of each mode, or the degree
of correlation between the isocurvature mode and the adiabatic
mode. This leads to a large number of additional degrees of free-
dom. There are either theoretical and phenomenological motiva-
tions for limiting the values of the parameters to certain values,
leading to specific cases with just one more degree of freedom
with respect to the adiabatic case. The results are reported in
Table 12, for uncorrelated perturbations with nII = 1, and fully
correlated or anti-correlated perturbations with nII = nRR. As
for the general case, anti-correlated isocurvature perturbations
slightly improve the fit to Planck data. In the following we con-
sider the implications of our results for two important scenarios,
the axion and curvaton scenarios.

10.3.1. Constraints on axion isocurvature

The axion field was proposed to solve the strong CP problem
and constitutes a well-motivated dark matter candidate (see,
e.g., Preskill et al. (1983), Turner (1990), Peccei (2008), Sikivie
(2008), Raffelt (2008), and Kim & Carosi (2010)). The axion is
the Goldstone boson of the broken Peccei-Quinn (PQ) symme-
try. Under certain assumptions, the axion field may induce sig-
nificant isocurvature perturbations (Turner et al., 1983; Axenides
et al., 1983; Steinhardt & Turner, 1983; Linde, 1984, 1985;
Seckel & Turner, 1985; Kofman, 1986; Lyth, 1990; Linde &
Lyth, 1990; Turner & Wilczek, 1991; Linde, 1991; Lyth, 1992).
If inflation takes place after PQ symmetry breaking, the quantum
fluctuations of the inflaton are responsible for primordial curva-
ture perturbations, while those of the axion field generate pri-
mordial entropy perturbations. After the QCD transition, when
one of the vacua becomes preferred giving the axion field a mass,
the axions behave as cold dark matter. This way of producing ax-
ionic dark matter is called the misalignment angle mechanism.
In such a scenario, the CMB anisotropy may include signifi-
cant power from CDM isocurvature fluctuations. In that case, the
fraction �iso ⌘ PII/(PRR +PII) of CDM isocurvature modes is
related to the energy scale of inflation, Hinf , through (Lyth, 1990;

Current observations allow for mixed Adiabatic+Isocurvature initial conditions

The Planck collaboration 2013

34 Planck Collaboration: Constraints on inflation

Model �iso(klow) �iso(kmid) �iso(khigh) ↵(2,2500)
RR ↵(2,2500)
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General model:
CDM isocurvature 0.075 0.39 0.60 [0.98:1.07] 0.039 [-0.093:0.014] 4 -4.6
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NV isocurvature 0.18 0.14 0.17 [0.96:1.05] 0.068 [-0.090:0.026] 4 -2.5
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Fully correlated, nII = nRR, (“curvaton”) 0.0025 0.0025 0.0025 [0.97:1] 0.0011 [0:0.028] 1 0
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cant amount of anticorrelated isocurvature modes, leading to a
reduction of amplitude of the Sachs-Wolfe plateau and to a de-
crease of the effective �2 by up to 4.618. This situation explains
the rather loose bounds on the derived parameter ↵II(2, 20), as
shown in Fig. 23.

A comparison ofP1
II andP2

II shows that best-fitting models
have an isocurvature spectral index nII close to 1.7 for CDI, 1.1
for NDI and 1.0 for NVI modes.

For CDI and NDI, the amplitude of acoustic peaks quickly
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by small `’s. Since the same value of the primordial amplitude
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II leads to different plateau amplitudes for the two isocurva-

ture models (see Fig. 21), the bounds on P(1)
II and P(1)
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tic peak amplitude is larger than the plateau amplitude. In NVI
models, the data cannot allow for a too large amplitude of corre-
lated isocurvature modes at small `, because the total spectrum
would be distorted at larger `. This possibility is strongly dis-
favoured by the data, which is consistent with the peak location
predicted by a pure adiabatic model. Hence in the NVI case we
obtain slightly stronger bounds and a smaller reduction of the
effective �2.

The fact that the data prefer models with a significant con-
tribution from CDI or NDI modes should be interpreted with
care. The detection of a shift in the phase of acoustic oscilla-
tions would bring unambigous evidence in favour of isocurva-
ture modes. With Planck data, we are not in this situation. The
evidence is driven by a small deficit of amplitude in the Sachs-
Wolfe plateau, that could have several different possible explana-
tions (such as a deficit in the large-scale primordial power spec-
trum, as already seen in the previous sections). However, multi-
field inflationary scenarios can produce the mixture of curvature
and isocurvature fluctuations which we have found to provide a
good fit to the Planck data.

18 For the three general models, the posterior distribution is actually
multimodal. Here we are referring to models contributing to the main
peak in the posterior, with the highest maximum likelihood. There is
another peak with a smaller maximum likelihood, appearing in Fig. 23
as a small bump for positive values of the cross-correlation amplitude.
In this paper, we do not carry out a separate investigation for models
contributing to this secondary peak.

10.3. Special cases

The six-parameter models of the previous subsection, includ-
ing one isocurvature mode and the adiabatic mode, make no as-
sumptions about the spectral indices of each mode, or the degree
of correlation between the isocurvature mode and the adiabatic
mode. This leads to a large number of additional degrees of free-
dom. There are either theoretical and phenomenological motiva-
tions for limiting the values of the parameters to certain values,
leading to specific cases with just one more degree of freedom
with respect to the adiabatic case. The results are reported in
Table 12, for uncorrelated perturbations with nII = 1, and fully
correlated or anti-correlated perturbations with nII = nRR. As
for the general case, anti-correlated isocurvature perturbations
slightly improve the fit to Planck data. In the following we con-
sider the implications of our results for two important scenarios,
the axion and curvaton scenarios.

10.3.1. Constraints on axion isocurvature

The axion field was proposed to solve the strong CP problem
and constitutes a well-motivated dark matter candidate (see,
e.g., Preskill et al. (1983), Turner (1990), Peccei (2008), Sikivie
(2008), Raffelt (2008), and Kim & Carosi (2010)). The axion is
the Goldstone boson of the broken Peccei-Quinn (PQ) symme-
try. Under certain assumptions, the axion field may induce sig-
nificant isocurvature perturbations (Turner et al., 1983; Axenides
et al., 1983; Steinhardt & Turner, 1983; Linde, 1984, 1985;
Seckel & Turner, 1985; Kofman, 1986; Lyth, 1990; Linde &
Lyth, 1990; Turner & Wilczek, 1991; Linde, 1991; Lyth, 1992).
If inflation takes place after PQ symmetry breaking, the quantum
fluctuations of the inflaton are responsible for primordial curva-
ture perturbations, while those of the axion field generate pri-
mordial entropy perturbations. After the QCD transition, when
one of the vacua becomes preferred giving the axion field a mass,
the axions behave as cold dark matter. This way of producing ax-
ionic dark matter is called the misalignment angle mechanism.
In such a scenario, the CMB anisotropy may include signifi-
cant power from CDM isocurvature fluctuations. In that case, the
fraction �iso ⌘ PII/(PRR +PII) of CDM isocurvature modes is
related to the energy scale of inflation, Hinf , through (Lyth, 1990;
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Model �iso(klow) �iso(kmid) �iso(khigh) ↵(2,2500)
RR ↵(2,2500)

II ↵(2,2500)
RI �n �2� lnLmax

General model:
CDM isocurvature 0.075 0.39 0.60 [0.98:1.07] 0.039 [-0.093:0.014] 4 -4.6
ND isocurvature 0.27 0.27 0.32 [0.99:1.09] 0.093 [-0.18:0] 4 -4.2
NV isocurvature 0.18 0.14 0.17 [0.96:1.05] 0.068 [-0.090:0.026] 4 -2.5

Special CDM isocurvature cases:
Uncorrelated, nII = 1, (“axion”) 0.036 0.039 0.040 [0.98:1] 0.016 – 1 0
Fully correlated, nII = nRR, (“curvaton”) 0.0025 0.0025 0.0025 [0.97:1] 0.0011 [0:0.028] 1 0
Fully anti-correlated, nII = nRR 0.0087 0.0087 0.0087 [1:1.06] 0.0046 [-0.067:0] 1 -1.3

Table 12. Isocurvature mode constraints. For each model, we report the 95% CL upper bound on the fractional primordial contribu-
tion of isocurvature modes at three co-moving wavenumbers (klow = 0.002 Mpc�1, kmid = 0.05 Mpc�1, and khigh = 0.10 Mpc�1), and
the 95% CL bounds on the fractional contribution ↵II and ↵RI to the total CMB temperature anisotropy in the range 2  `  2500.
We also report �2� lnLmax for the best-fitting model in each case, relative to the best-fit 6-parameter ⇤CDM model, with the
number of additional parameters �n. In the Gaussian approximation, �2� lnLmax corresponds to ��2. The general models have six
parameters that specify the primordial correlation matrix at two scales k1 and k2, thus allowing all spectral indices to vary (so, four
parameters more than the pure adiabatic model).

cant amount of anticorrelated isocurvature modes, leading to a
reduction of amplitude of the Sachs-Wolfe plateau and to a de-
crease of the effective �2 by up to 4.618. This situation explains
the rather loose bounds on the derived parameter ↵II(2, 20), as
shown in Fig. 23.

A comparison ofP1
II andP2

II shows that best-fitting models
have an isocurvature spectral index nII close to 1.7 for CDI, 1.1
for NDI and 1.0 for NVI modes.

For CDI and NDI, the amplitude of acoustic peaks quickly
decreases with increasing `, so the constraints are entirely driven
by small `’s. Since the same value of the primordial amplitude
P(1)
II leads to different plateau amplitudes for the two isocurva-

ture models (see Fig. 21), the bounds on P(1)
II and P(1)

RI are con-
sistently stronger for CDI than for NDI. For NVI, the acous-
tic peak amplitude is larger than the plateau amplitude. In NVI
models, the data cannot allow for a too large amplitude of corre-
lated isocurvature modes at small `, because the total spectrum
would be distorted at larger `. This possibility is strongly dis-
favoured by the data, which is consistent with the peak location
predicted by a pure adiabatic model. Hence in the NVI case we
obtain slightly stronger bounds and a smaller reduction of the
effective �2.

The fact that the data prefer models with a significant con-
tribution from CDI or NDI modes should be interpreted with
care. The detection of a shift in the phase of acoustic oscilla-
tions would bring unambigous evidence in favour of isocurva-
ture modes. With Planck data, we are not in this situation. The
evidence is driven by a small deficit of amplitude in the Sachs-
Wolfe plateau, that could have several different possible explana-
tions (such as a deficit in the large-scale primordial power spec-
trum, as already seen in the previous sections). However, multi-
field inflationary scenarios can produce the mixture of curvature
and isocurvature fluctuations which we have found to provide a
good fit to the Planck data.

18 For the three general models, the posterior distribution is actually
multimodal. Here we are referring to models contributing to the main
peak in the posterior, with the highest maximum likelihood. There is
another peak with a smaller maximum likelihood, appearing in Fig. 23
as a small bump for positive values of the cross-correlation amplitude.
In this paper, we do not carry out a separate investigation for models
contributing to this secondary peak.

10.3. Special cases

The six-parameter models of the previous subsection, includ-
ing one isocurvature mode and the adiabatic mode, make no as-
sumptions about the spectral indices of each mode, or the degree
of correlation between the isocurvature mode and the adiabatic
mode. This leads to a large number of additional degrees of free-
dom. There are either theoretical and phenomenological motiva-
tions for limiting the values of the parameters to certain values,
leading to specific cases with just one more degree of freedom
with respect to the adiabatic case. The results are reported in
Table 12, for uncorrelated perturbations with nII = 1, and fully
correlated or anti-correlated perturbations with nII = nRR. As
for the general case, anti-correlated isocurvature perturbations
slightly improve the fit to Planck data. In the following we con-
sider the implications of our results for two important scenarios,
the axion and curvaton scenarios.

10.3.1. Constraints on axion isocurvature

The axion field was proposed to solve the strong CP problem
and constitutes a well-motivated dark matter candidate (see,
e.g., Preskill et al. (1983), Turner (1990), Peccei (2008), Sikivie
(2008), Raffelt (2008), and Kim & Carosi (2010)). The axion is
the Goldstone boson of the broken Peccei-Quinn (PQ) symme-
try. Under certain assumptions, the axion field may induce sig-
nificant isocurvature perturbations (Turner et al., 1983; Axenides
et al., 1983; Steinhardt & Turner, 1983; Linde, 1984, 1985;
Seckel & Turner, 1985; Kofman, 1986; Lyth, 1990; Linde &
Lyth, 1990; Turner & Wilczek, 1991; Linde, 1991; Lyth, 1992).
If inflation takes place after PQ symmetry breaking, the quantum
fluctuations of the inflaton are responsible for primordial curva-
ture perturbations, while those of the axion field generate pri-
mordial entropy perturbations. After the QCD transition, when
one of the vacua becomes preferred giving the axion field a mass,
the axions behave as cold dark matter. This way of producing ax-
ionic dark matter is called the misalignment angle mechanism.
In such a scenario, the CMB anisotropy may include signifi-
cant power from CDM isocurvature fluctuations. In that case, the
fraction �iso ⌘ PII/(PRR +PII) of CDM isocurvature modes is
related to the energy scale of inflation, Hinf , through (Lyth, 1990;
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