“What is the best treatment for highest Q and medium gradient for CW applications?

• For CW applications the gradient becomes cost limited by the dynamic heat load.
 ▪ The cost of refrigeration for a several GeV CW accelerator becomes substantial, so that the optimum gradient for lowest cost is likely to be in the 15 – 20 MV/m range.
• Higher Q’s will likely drive the optimum gradient higher and the cost lower.
• Hence the goal of the discussion is to help identify the best treatment that will give the highest Q at medium gradients.
• The frequency for the accelerator also has a bearing on the dynamic heat load, since BCS resistance decreases as f^2, but the shunt impedance (per unit length) decreases with f. But we won't have time discuss low frequency results...sorry
Our Panel of Experts

- Alexander Romanenko – Fermilab
- Anna Grasselino – Fermilab
- Mathias Liepe – Cornell
- Pushapati Dhakal - Jlab
- Detlef Reschke – DESY
- Julia Vogt – BESSY
Guiding Questions

• Lots of information presented in previous talks here
 – Put together as much as possible
• **Surface Treatment**
 – 1) Is BCP or EP the superior treatment for highest Q?
• 2) Does tumbling help to reach higher Q’s?
 – (above the statistical spreads).
• **Material**
 – 3) Does large grain material give higher Q’s
 – (above the statistical spreads).
120 C Bake

4) It is well known that 120 C bake lowers the BCS resistance component. But it also raises the residual resistance (spoiling the oxide).

5) Is baking recommended for high Q?
 – Can the residual resistance be restored by HF rinsing?
 – How does 120 C baking affect the medium field Q-slope?
 – How does HF rinsing affect the medium field Q-slope?
Medium Field Q-Slope

• 6) What is (are) the cause (s) of the medium field Q-slope (MFQS)?
 – Is it simple a thermal effect
• 7) Which component of the resistance increases with field during MFQS?
 – BCS or residual?
High Temperatures and New Treatments

• 8) Does higher temperature (800 C and above) annealing raise Q?

• 9) Are there any new treatments that give higher than standard BCS Q?

• Include promising results from new materials such as Nb3Sn.
Preserving the Q in the CM

10) What are the precautions/procedures to maintain higher Q’s from vertical test to cryomodule?

- DC magnetic field shielding, avoiding flux trapping due to thermo currents etc.
1) Is BCP or EP the superior treatment for highest Q?

• When both get 120°C to minimize BCS resistance
Effect of standard treatments

“BCS” resistance

Residual resistance

1.3 GHz, 2K.....Alexander

Alexander Romanenko
• Is BCP or EP the superior treatment for highest Q?
 – EP - gives less field dependence of the residual => higher Q at the operating gradient
 • however if it is due to trapped flux – may be mitigated by the slow cooldown/flux expulsion techniques
 – If BCS-dominated (e.g. 4.2K) – does not matter much
2) Does tumbling help to reach higher Q’s? (above the statistical spreads).
2) ANNA

Marginally – note: tumbled cavities go through extra 800°C cycles

Single cells

N at total	**Mean**	**Sigma**	**Minimum**	**Median**	**Maximum**
Not tumbled | 11 | 2.6 | 0.50796 | 1.43 | 3.14
Tumbled | 11 | 2.69273 | 0.71337 | 1.53 | 4.24

Nine cells

N total	**Mean**	**Sigma**	**Minimum**	**Median**	**Maximum**
Not tumbled | 10 | 1.777 | 0.39556 | 1.16 | 2.17
Tumbled | 11 | 1.89182 | 0.52759 | 0.99 | 2.87
2) Does tumbling help to reach higher Q’s? (above the statistical spreads)
So far even with mirror finish surface (no chemistry post tumbling) no Q improvement observed

Dead layer due to nanoroughness? Room for Rs improvement if surfaces are mirror smooth (ie <50 nm roughness)?

- Cavity tumbled with last steps (mirror finish only) – significantly smoother surface, but no improvement found
- Notice also HFQS at same onset

A. Romanenko et al, LE-muSR, tbp

C. Cooper et al, tbp
3) Does large grain material give higher Q’s (above the statistical spreads).
Hot Topic: What is the best treatment for highest Q and medium gradient for CW applications?

Vertical Test: Comparison of LG vs. FG Cavities at DESY

- Based on 11 LG-Cavities + 18 FG Cavities
- Number of entries/data point decreasing with increasing gradient
- Statistical error shown
Vertical Test of LG Cavities at DESY

- Based on 11 LG-Cavities
- Only 4 LG Cavities with EP+
- Number of entries/data point decreasing with increasing gradient
- Statistical error shown
Compared to fine-grain 9-cell TTF shape cavities EP processed according to the ILC recipe and tested in the same Dewar, LG cavities have a clear better Q0 above statistical spreads.

[arXiv:1304.1722]
FNAL analysis of DESY data by O. Melnychuk, see TUP100

- DESY data for ILC 9-cells
 - $<Q_0@16 \text{ MV/m}> = 1.9 \times 10^{10} \ @ 2K$
- DESY LG material, same cavity type
 - $<Q_0@16 \text{ MV/m}> = 2.1 \times 10^{10} \ @ 2K$

- Very small difference between fine- and large-grain material in VT
- 60% lower heat load in CM (LG vs FG) quoted at this workshop consistent with lower trapping efficiency of LG
- BUT, if attention is paid to CM cooldown and shielding (see HZB and Cornell), no clear advantage of large grain vs fine grain
- In summary, LG is just less prone to gain residual (when things are not done right)
120 C Bake/HF Rinse

4) It is well known that 120 C bake lowers the BCS resistance component. But it also raises the residual resistance.

5) Is baking recommended for high Q? Can the lower residual resistance be restored by HF rinsing? How do the answers depend on frequency choice?
 – How does 120 C baking affect the medium field Q-slope?
 – How does HF rinsing affect the medium field Q-slope?
• Is baking recommended for high Q?
 – Depends on the frequency, T, at T=2 K, 1.3 GHz helps marginally, 650 MHz, 325 MHz – does not help, makes worse, e.g. for single spokes (325 MHz) instead of 4 nOhm (unbaked) we get 6-8 nOhm
 • However always helps at 4.2K
 – If combined with the HF rinse – benefits all frequencies
 – For new doping treatment - no
• Can the lower residual resistance be restored by HF rinsing?
 – Yes, 120C baking-induced increase can be negated

1.3 GHz

Tumbled + EP + 120C + HF rinse

Q0
Hpeak (mT)

650 MHz cavity results (A. Grassellino)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Low(field) Q0</th>
<th>Low(field) residual resistance [nΩ]</th>
<th>Low(field) BCS resistance [nΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP#</td>
<td>5e10#</td>
<td>~1.7#</td>
<td>~3.3#</td>
</tr>
<tr>
<td>EP+120C#</td>
<td>5.3e10#</td>
<td>~3.5#</td>
<td>~1.5#</td>
</tr>
<tr>
<td>EP+120C + HF rinse#</td>
<td>8e10#</td>
<td>~1.7#</td>
<td>~1.5#</td>
</tr>
</tbody>
</table>
• How does 120 C baking affect the medium field Q-slope?
 – Increases $\text{R}_{\text{bcs}}(B)$ slope

• How does HF rinsing affect the medium field Q-slope?
 – Decreases residual resistance contribution -> makes slope in $\text{R}_{\text{bcs}}(B)$ more apparent
Medium Field Q-Slope

• 6) What is (are) the cause (s) of the medium field Q-slope (MFQS)?
 – Is it simple a thermal effect
• 7) Which component of the resistance increases with field during MFQS?
 – BCS or residual?
Role of thermal feedback...Alexander

- What is (are) the cause (s) of the medium field Q-slope (MFQS)? Is it simply a thermal effect, i.e. the RF surface temperature rises, so the BCS resistance increases, which continues in a feedback loop?
 - NO

\[\Delta R_{\text{BCS}} = R_{\text{BCS}}(T_{\text{rf}}) - R_{\text{BCS}}(T_{\text{bath}}) - \text{“thermal feedback”} \]

This is what we see in 1.3 GHz cavities

This is how much thermal feedback can provide (worst case scenario – based on the temperature mapping results - hottest spot taken)

Negligible effect on \(R_{\text{BCS}} \) at \(T \leq 2K \)

October 17, 2013
Alexander Romanenko
Which component leads to MFQS?

“BCS” resistance

- **Residual resistance**

Which component of the resistance increases with field during MFQS, the temperature independent part (residual) or the temperature dependent part (the BCS part?)

- In cavities without 120C bake – primarily residual
- With 120C bake - both
High Temperatures and New Treatments

• 8) Does higher temperature (800 C and above) annealing raise Q?

• 9) Are there any new treatments that give higher than standard BCS Q?

• Include promising results from new materials such as Nb3Sn.
ANNA 8) Does higher temperature (800°C and above) annealing raise Q?

Yes, if annealing is the last processing step

- EP + 800°C 2 hrs + 20-40 micron EP + 120°C
- Systematically low $R_0 \sim 1 \text{nΩ}$, R_{BCS} of a mild baked cavity (more room for venting studies needed)
- Extra cost savings from skipping the post furnace chemical processing
9) Are there any new treatments that give higher than standard BCS Q?

Yes, the bake in nitrogen or argon

- Total surface resistance of 3 nΩ @ 17 MV/m, 1.3 GHz, 1.8K
- Rbcs ~ 4 nΩ @ 2K and 1.5 nΩ @ 17 MV/m, 1.3 GHz
- Compare to std Rbcs ~ 9 nΩ @ 2K and ~ 4-5 nΩ @ 1.8K
- Currently, best treatment for reproducible high Q at mid field at 1.3 GHz (and 650 MHz, too, see TUP050)

Fermilab
High temperature heat treatments can do good things:
 • Low residual resistance (sometimes)
 • High T_c / large energy gap
 • Small mean free path

Bake in low pressure N_2 atmosphere might help to optimize BCS parameters.
Example 1: Long 1000 C Heat Treatment

Treatment:
- 100 μm bulk BCP
- 1000°C for 5 days
- No additional chemistry

Residual resistance of 0.36±0.08 nΩ!

More details: See Daniel Gonnella’s poster TUP027
After additional Chemistry

- Anti-Q-slope up to 10 MV/m
- Operation well above B_{c1} with very high Q_0
 \Rightarrow no vortex entry
 \Rightarrow B_{c1} is not a fundamental limit for SRF !!

More details: See Daniel Gonnella’s poster TUP027
Material Parameters

<table>
<thead>
<tr>
<th>Property</th>
<th>1000° C Bake</th>
<th>80 µm BCP</th>
<th>280 µm Total BCP</th>
<th>120° C Bake</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_C [K]</td>
<td>9.3 ± 0.9</td>
<td>9.3 ± 0.9</td>
<td>9.3 ± 0.9</td>
<td>9.5 ± 0.9</td>
</tr>
<tr>
<td>$\Delta/k_B T_C$</td>
<td>1.78 ± 0.02</td>
<td>1.78 ± 0.02</td>
<td>1.79 ± 0.1</td>
<td>1.96 ± 0.2</td>
</tr>
<tr>
<td>ℓ [nm]</td>
<td>8 ± 2</td>
<td>8 ± 2</td>
<td>7 ± 2</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>R_{res} [nΩ]</td>
<td>0.36 ± 0.08</td>
<td>1.2 ± 0.3</td>
<td>1.3 ± 0.3</td>
<td>5 ± 1.2</td>
</tr>
<tr>
<td>κ_{GL}</td>
<td>7 ± 1</td>
<td>7 ± 1</td>
<td>8 ± 1</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>B_{c1} [mT]</td>
<td>45 ± 14</td>
<td>44 ± 14</td>
<td>42 ± 15</td>
<td>36 ± 16</td>
</tr>
</tbody>
</table>

⇒ Low residual resistance
⇒ Small mean free path
⇒ 120°C bake increased energy gap

More details: See Daniel Gonnella’s poster TUP027
Example 2: 800 C Heat Treatments with and without

- N2 bake: 800C for 3 hours + 10 min with 10^{-2} torr N$_2$
- No strong field dependence up to 20 MV/m

More details: See Daniel Gonnella’s poster TUP029
800 C Heat Treatments with and without low Pressure

- **N₂** treatment significantly lowered BCS resistance

More details: See Daniel Gonnella’s poster TUP029
<table>
<thead>
<tr>
<th>Property</th>
<th>100 µm EP</th>
<th>800C</th>
<th>800C+ 5 µm EP</th>
<th>N₂ Treatment + 7 µm EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_C [K]</td>
<td>9.2 ± 0.9</td>
<td>9.1 ± 0.9</td>
<td>9.1 ± 0.9</td>
<td>9.2 ± 0.9</td>
</tr>
<tr>
<td>Δ/k_BT_C</td>
<td>1.75 ± 0.02</td>
<td>2.08 ± 0.03</td>
<td>1.97 ± 0.03</td>
<td>2.01 ± 0.02</td>
</tr>
<tr>
<td>ℓ [nm]</td>
<td>14 ± 4</td>
<td>2.4 ± 4</td>
<td>3.1 ± 0.9</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>R_{res} [nΩ]</td>
<td>9 ± 2</td>
<td>12 ± 3</td>
<td>4 ± 1</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>κ_{GL}</td>
<td>5.0 ± 0.8</td>
<td>22 ± 5</td>
<td>17 ± 5</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>B_{c1} [mT]</td>
<td>58 ± 12</td>
<td>22 ± 19</td>
<td>26 ± 18</td>
<td>34 ± 16</td>
</tr>
</tbody>
</table>

- N₂ treatment improved BCS parameters for high Q_0

More details: See Daniel Gonnella’s poster TUP029
Does higher temperature raise Q?
JLAB - Pushpati

Recent test on cavities heat treated in the temperature range 800-1600C showed the dramatic improvement in Q_0 mostly due to the reduction of residual resistance and enhanced gap.

In 70-80’s high Q cavities were heat treated the temperature much higher than 800 C.

With a proper furnace, chemistry after the high temperature heat treatment is not necessary.

Low temperature baking may not be necessary for the medium field Q, since it tend to increase the residual resistance.
Message 2

Alternative materials have greatest potential for high Q_0

Sam’s Nb$_3$Sn cavity is the first accelerator cavity made with an alternative superconductor that outperforms Nb at usable gradients!
1.3 GHz Nb$_3$Sn Cavity @ Cornell

~20x more efficient than Nb at 4.2 K!
Sam’s Nb$_3$Sn Cavity

Clearly above $B_{c1} = 27 \pm 5$ mT for this cavity without strong Q slope!

B_{c1} is NOT a fundamental limitation

Energy barrier keeps Meissner state metastable, even with small ξ of Nb$_3$Sn.

More details: See Sam Posen’s poster TUP087
Preserving the Q in the CM

10) What are the precautions/procedures to maintain higher Q’s from vertical test to cryomodule? DC magnetic field shielding, avoiding flux trapping due to thermo currents etc.
precautions/procedures to maintain higher Q’s from vertical test to cryomodule

- Clean Room assembly of the cavity parts. Mounting of the string in the clean room. Using the main coupler with two RF windows to allow the clean coupler installation on the cavity.

- Clean UHV conditions

- Using the cavity magnetic field shield (µ-metal). The shield is mounted on the LHe tank and provides enough shielding to keep the vertical test results within measurement error margins.

Module XM-3 data: (pulsed; 2K)
Residual losses are often dominated by trapped flux

We know of three ways to reduce this:
1) Minimize the pinning centers, i.e. don’t give the magnetic flux a chance to get trapped.
2) Provide conditions for the magnetic flux to leave the material.
3) Don’t generate new flux by avoiding temperature gradients.
1) MINIMIZE THE PINNING CENTERS

<table>
<thead>
<tr>
<th>#</th>
<th>Crystal structure</th>
<th>Treatment</th>
<th>Fraction of trapped flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polycrystalline</td>
<td>None</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Polycrystalline</td>
<td>BCP</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Polycrystalline</td>
<td>BCP + 800°C bake out</td>
<td>(83.1 ± 0.8)%</td>
</tr>
<tr>
<td>4</td>
<td>Single crystal</td>
<td>BCP</td>
<td>[(72.9 + 0.1 ln ν) ± 0.8]%</td>
</tr>
<tr>
<td>5</td>
<td>Single crystal</td>
<td>BCP + 800°C bake out</td>
<td>[(61.6 + 1.3 ln ν) ± 0.8]%</td>
</tr>
<tr>
<td>6</td>
<td>Single crystal</td>
<td>BCP + 1200°C bake out</td>
<td>[(42.1 + 0.13 ln ν) ± 0.6]%</td>
</tr>
</tbody>
</table>

Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012)

Consistent with results that Q’s of large grain cavities are greater. For example W. Singer, MOIOA03: “Large grain cavities on average have 60% higher Q”

Use large grain and heat treated material!
2) PROVIDE CONDITIONS FOR THE MAGNETIC FLUX TO LEAVE THE MATERIAL

Level ambient field

Initially expelled flux: $\Delta B \approx 50\text{nT}$

Cool slowly through the phase transition

Increasing Meissner effect

Phase transition

Cooling rate $[\text{mK/s}]$

B $[\mu\text{T}]$

T $[\text{K}]$

$B_{sc} - B_{nc}$ $[\mu\text{T}]$

T $[\text{K}]$

t $[\text{min}]$

Vogt, Kugeler and Knobloch, IPAC2013, WEPWO004
3) AVOID GENERATION OF FLUX

Avoid temperature gradients!
Anna: What are the precautions/procedures to maintain higher Q’s from vertical test to cryomodule? Prevention of hydrogen reabsorption post furnace treatment is crucial.

Cavities with some amount of hydrogen worsen at second cooldown.

M. Checchin and A. Grassellino, to be published.

Knobloch and Padamsee, 8th Workshop on RF Superconductivity, Padova, Italy. SRF 981012-12
What are the precautions/procedures to maintain higher Q’s from vertical test to cryomodule?

Shielding and cooldown are crucial: R0 due to trapped flux worsens at operating gradient.

Benvenuti, Calatroni et al, Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme (Padova), Italy.
• HTC-1: Follow vertical assembly procedure as closely as possible

• HTC-2: Include side mounted, high power RF input coupler

• HTC-3: Full cryomodule assembly-high power RF input coupler and beam line HOM loads
• Higher Q_0 in cryomodule than in vertical test!
• Difference: residual resistance
HTC 3 (BCP, 120C, HF rinse)

Initial Cooldown at 16.2 MV/m

\[Q(2.0 \text{ K}) = 2.5 \times 10^{10} \]
\[Q(1.8 \text{ K}) = 3.5 \times 10^{10} \]
\[Q(1.6 \text{ K}) = 5.0 \times 10^{10} \]

10 K thermal cycle at 16.2 MV/m

\[Q(2.0 \text{ K}) = 3.5 \times 10^{10} \]
\[Q(1.8 \text{ K}) = 6.0 \times 10^{10} \]
\[Q(1.6 \text{ K}) = 10.0 \times 10^{10} \]

More details: See Nick Valles’ poster MOP071 and Ralf’s talk on Friday

HZB thermal cycling work: TUIOA01
HTC: Why higher Q_0 than in Vertical Test?

- Excellent magnetic shielding (two layers)
- Very small thermal gradients across cavity during cool down
 - Cavity temperature gradient ~ 0.2 K
 - Cool down rate through T_c: ~ 0.4 K/hr

6 Cernox temperature sensors mounted on top and bottom of end cells and center cell