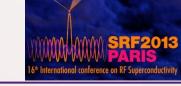


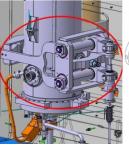
A COLD TUNER SYSTEM WITH MOBILE PLUNGER

ESS-BILBAO, IFMIF, MYRRHA AND SPIRAL2

Unité mixte de recherche CNRS-IN2P3
Université Paris-Sud

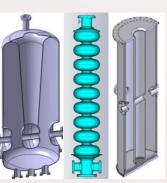
91406 Orsay cedex Tél.: +33 1 69 15 73 40 Fax: +33 1 69 15 64 70 http://ipnweb.in2p3.fr


OUTLINE


- Mobile plunger System presentation
- ESS-Bilbao System
- IFMIF System
- **❖ MYRRHA 325MHz CH Cavity**
- SPIRAL2 System
- ***** CONCLUSION

EXAMPLES OF TUNING SYSTEMS


Spiral2 tuner.



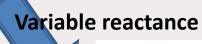
Scissors Jack tuner


By deformation (most used)

Blade tuner.

ESS Spoke tuner

Isac2 tuner, Triumf.


ReA3 tuner

ATLAS upgrade

ESS- Bilbao

tuner

Spiral2 tuner.

PROS AND CONS

	By deformation		By insertion	
Pros	- Reliable - A lot of experience - No direct interactions in cavity RF space		- Low force needed - No risks of plastic deformation - Tuning range not limited by Niobium - Several tuners in parallel.	
	- Ea	Complementary where the	•	mpact
Cons	 Possible irreversible damages (plastic deformation) Massive (difficult to cool down) High forces involved Tuning range limited by limit of elasticity of Niobium Only one tuner per cavity 		- Lack of experience - Inserted in cavity volume (problems of cleanliness, possible RF limitations - Has to be integrated in LHe loop - Complexity of cleaning procedure and maintenance (dust generation?) - Quench problems	

Frequency (MHz)

351

349

348

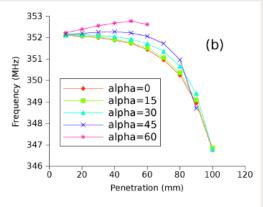
20

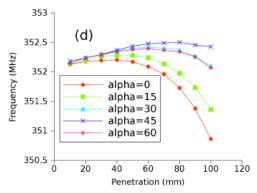
ESS-BILBAO TUNER (1)

alpha=15

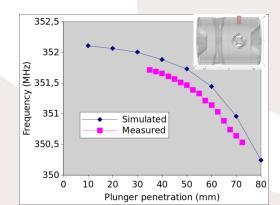
alpha=30

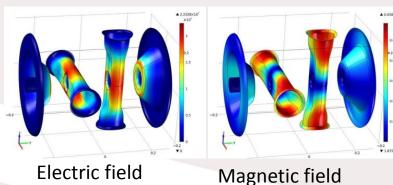
alpha=45


alpha=60

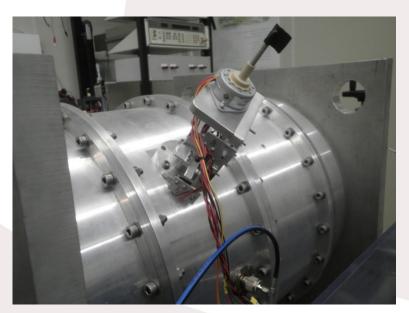

60

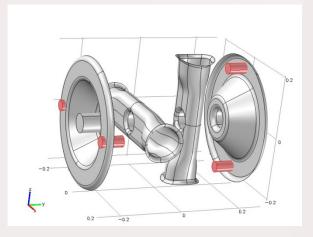
Penetration (mm)

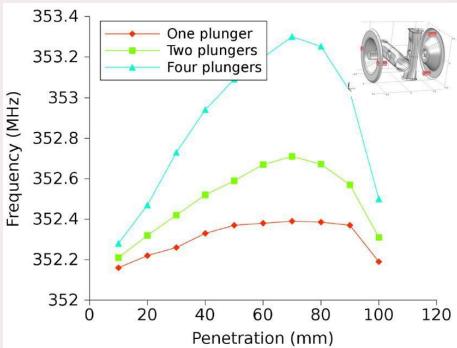

100


120

- ➤ RF simulations done for different plunger position and orientation (diameter of 35mm)
- ➤ Most favorable is perpendicular and aligned with spoke.
- ➤ Aluminium prototype built to validate simulations
- ➤ Good agreements between simulations and prototype measurements

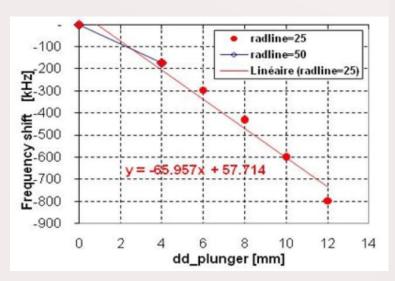


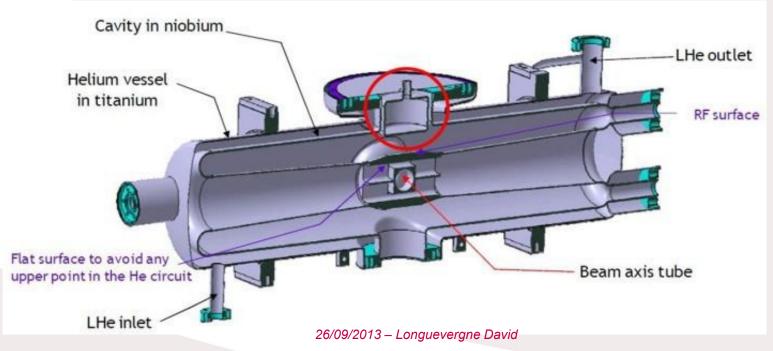

ESS-BILBAO TUNER (1)



- ➤ Alternative position studied through end covers (positive shift).
- > To be done:
 - Mechanical design
 - LHe loop design
 - Additional RF analyses: perturbation of

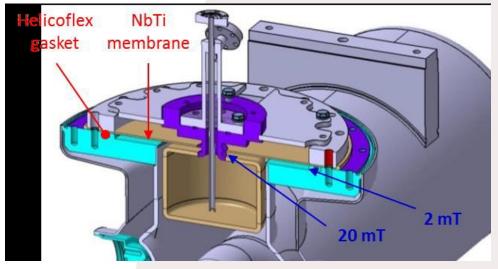
electric field on beam axis.

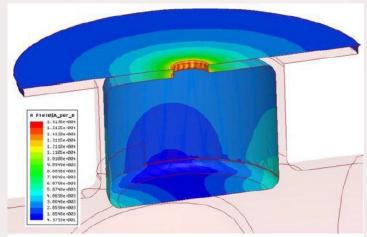


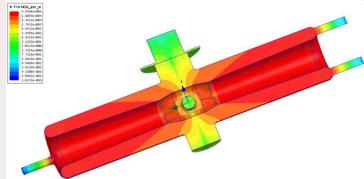


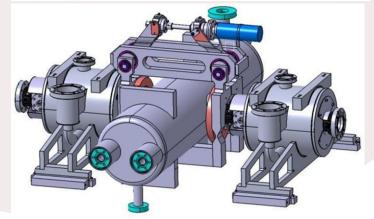
IFMIF TUNER (1)

- ➤ Plunger solution envisaged for compactness and because of stiffness of cavity
- $\triangleright \emptyset = 100$ mm, bulk Nb.
- \triangleright Membrane in NbTi : \pm 1 mm => \pm 50 kHz
- ➤ Design well advanced and prototyping done
- Cold test revealed premature quench at 1 MV/m and low Qo.

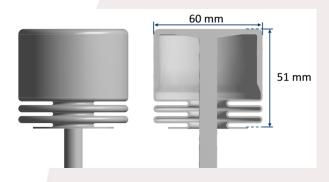


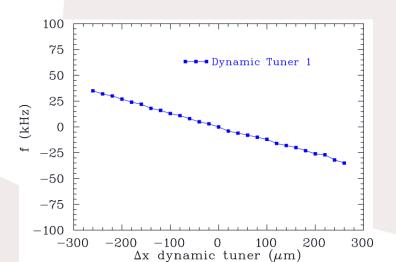


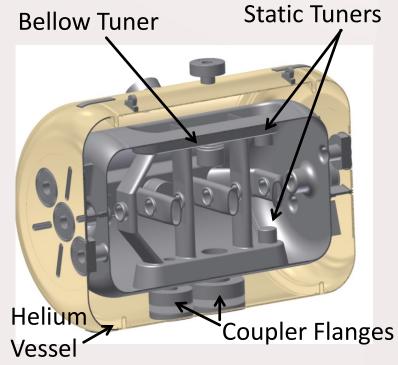

IFMIF TUNER (2)

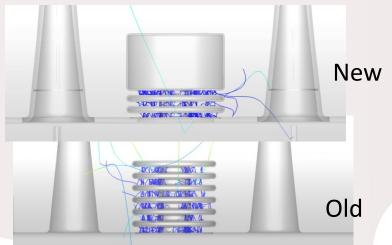


- Additional RF simulation showed a significant magnetic field on plunger neck (NbTi) and on Helicoflex gasket.
- > Tests done to localize quench:
 - NbTi parts replaced by Nb parts
 - ⇒ Quench field increased but Qo still low
 - Nb plunger inverted (field reduction on gasket)
 - ⇒ Qo and quench field increased
- ➤ Plunger solution abandoned for more conservative tuner system by deformation due to tight schedule.

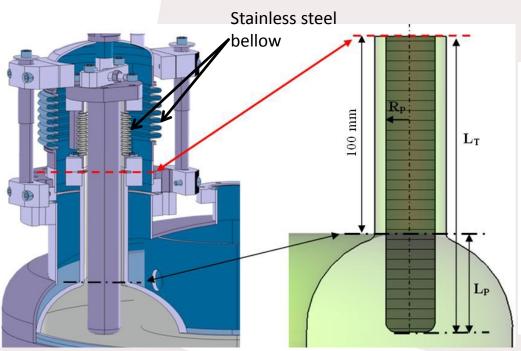


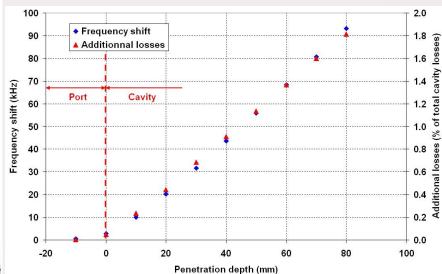



MYRRHA 325 MHZ CH CAVITY TUNER

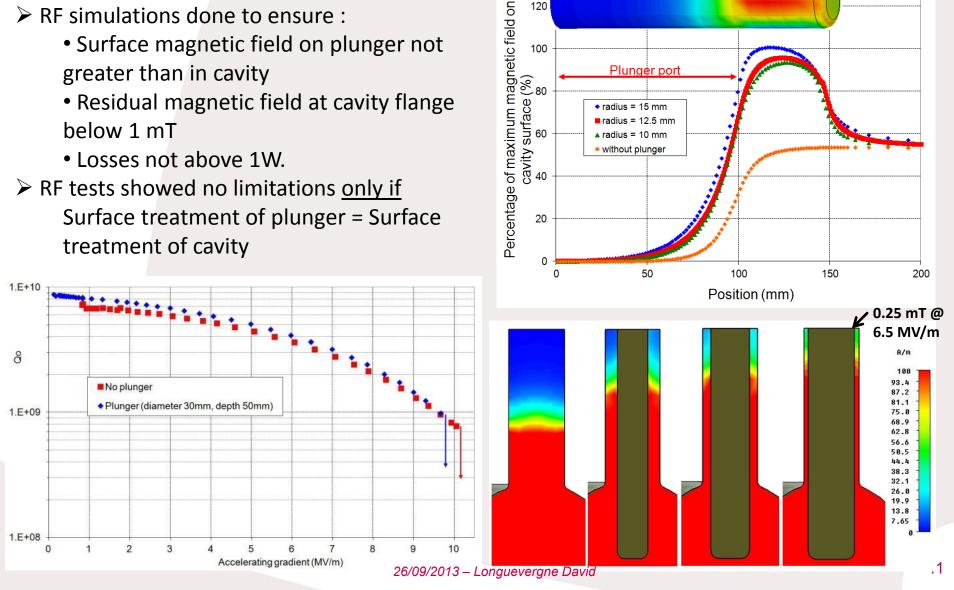


- > 2 Niobium bellow tuners
- ➤ Sensitivity ~ 125 kHz/mm
- Fast tuner Δ F=130Hz, slow tuner Δ F=130kHz
- Optimized to limit multipacting in bellow
- Cavity and tuners have been built
- > To be tested at 4K




SPIRAL2 TUNER (1)

- ➤ Most advanced system already validated at 4K on 14 cavities (RF validation).
- ➤ Validated on cryomodule (RF + mechanical validation)
- \triangleright Ø = 30mm, bulk Nb, stainless steel bellow
- ➤ Sensitivity ~ 1kHz/mm, Range : ± 4mm
- ➤ Static penetration ~ 50mm in cavity



SPIRAL2 TUNER (2)

- > RF simulations done to ensure :
 - Surface magnetic field on plunger not greater than in cavity
 - Residual magnetic field at cavity flange below 1 mT
 - Losses not above 1W.

140

120

100

Plunger port

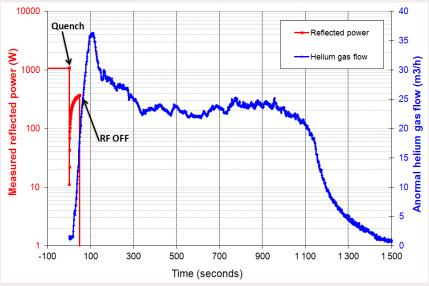
radius = 15 mm radius = 12.5 mm

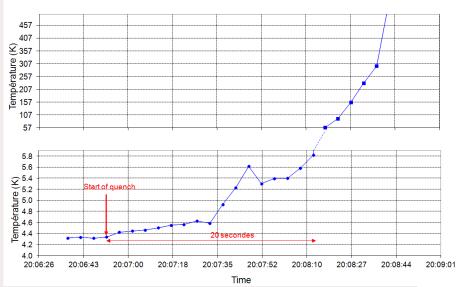
▲ radius = 10 mm without plunger

SPIRAL2 TUNER (3)

Diameter	Static detuning (kHz)		Dynamic detuning (Hz)	Additional losses (%) @ 6.5 MV/m	Magnetic field at flange (mT)
	Min (10mm)	Max (50 mm)	+/- (4 mm)	Max (50mm)	
Φ = 20 mm	5	25	1900	2.2	0.05
Φ = 25 mm	8	39	3000	4.7	0.11
Φ = 30 mm	11	50	4300	11	0.25

SPIRAL2 TUNER (4)




Quench problematic :

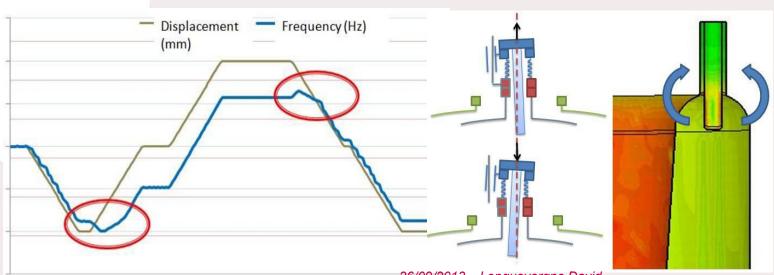
Cavity is strongly overcoupled

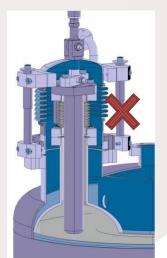
- ⇒ Quenched cavity has a Qo close to Qext
- ⇒ Significant RF power dissipated ~ 500W
- ⇒ If plunger is quenched, temperature increases very quickly.
- ⇒ Can be destructive if power not stopped within seconds.

Temperature in plunger during a quench

SPIRAL2 TUNER (3)

▶ Mechanical problem observed :


Significant overshoot (~ 100 Hz) and hysteresis (< 200 Hz) when direction of motion is changed


 \Rightarrow frequency regulation impossible as bandwidth \sim 88 Hz.

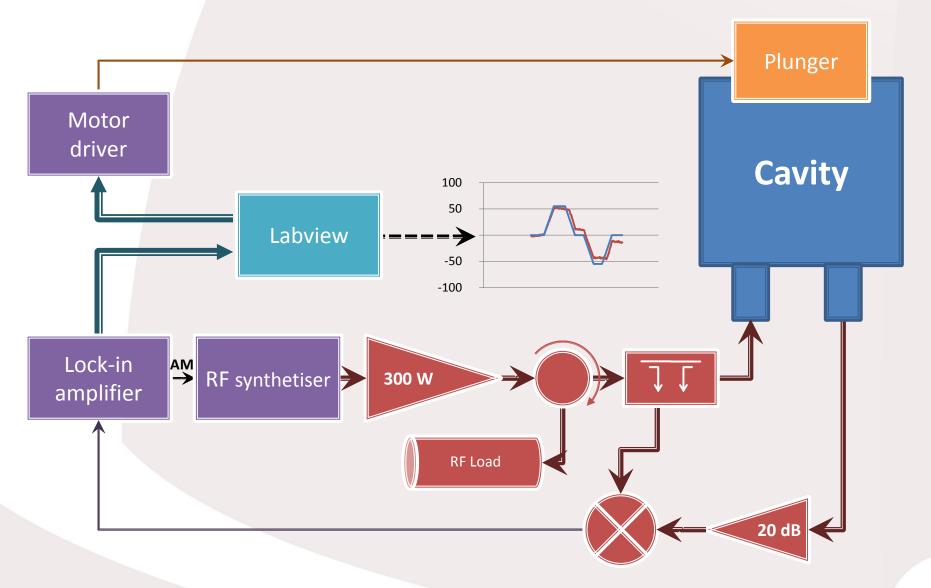
Difficulty to identify and localize the problem.

⇒ Need to develop a technique to measure small frequency deviation at room temperature to ease troubleshooting

- Swing motion of plunger because of plays
- ➤ Impossible to redesign the whole mechanism and annulate plays!
- ➤ Trick: force swing motion along field lines to avoid frequency change (Slater Th.)
- > Reduce hyperstatism.
- \Rightarrow Overshoot < 5 Hz.
- \Rightarrow Hysteresis < 20 Hz.

CONCLUSION

- > ESS-Bilbao system offers many alternative
- > IFMIF system abandoned but unfortunately lack of time
- ➤ MYRRHA system to be validated at 4K
- SPIRAL2 system is now successful!
- Moving plunger is a good alternative solution when
 - ⇒ Cavity is too stiff (QWR, HWR, Spoke, ...)
 - ⇒ Compactness is required
 - ⇒ Flexibility is needed (capacitive or inductive, multiplicity)
- **>** BUT:
- ⇒ Lack of experience (dust generation ?)
- ⇒ Require additional RF simulation (maximum field, residual field, losses, ...)
- ⇒ Require surface conditioning at the same standards as the cavity
- ⇒ Maintenance more complicated (clean room required)
- ⇒ Translation mechanism has to be well adjusted and very reliable



Many Thanks to J.L Munoz (ESS-Bilbao), Guillaume Devanz (CEA-IRFU) and H. Podlech (IAP) for the material.

Thank you for your attention

