

INFLUENCE OF THE COOLDOWN AT THE TRANSITION TEMPERATURE ON THE SRF CAVITY QUALITY FACTOR

Oliver Kugeler, Julia Vogt, Jens Knobloch

SRF 2013 Paris, France

Introduction

- Many new accelerator applications require CW SRF.
 Focus shifts to dynamic losses.
- Cryogenics = cost driver
- Minimize cryogenic load $P_{diss} \sim R_{surf} E_{acc}^{2}$
 - Want low surface resistance at moderate gradients

•
$$R_{surface} = R_{BCS}(f,T) + R_{residual}(?)$$

physics originates to great fraction from trapped vortices (incomplete Meissner effect)

- We found that cavity cooldown procedures have an impact on R_{res}
 - presumably due to the generation of additional flux from thermo currents

Flashback to SRF 2009

- Measured Q increase upon "thermal cycling" to about 40 K
- Effect not understood back then. New investigations have yielded an explanation: thermocurrents

Q₀ vs T measurements

- HoBiCaT test facility used
- Horizontal, fully equipped industrial cavity welded into Helium tank
- Configuration like in accelerator module
- Temperatures down to 1.5 K
- All measurement done with one cavity in one measurement run!

- Double magnetic shielding (warm shield + cryoperm) Small residual fields < 1 μT
- TTF-III coupler, near critical coupling (0.8 < β < 2.5)
- Verification of RF measurements with LHe-loss measurements and Lorentz detuning
 Error assumed smaller than 10%

Cavity cooldown procedure

Dynamics of Helium filling leads to large temperature gradients

Initial cool down

Materials interfaces in cavity with tank

Thermocurrents

- Cavity forms thermoelement
- Different Seebeck coefficients for Nb and Ti

$$U_{\text{thermo}} = (S_{\text{Niobium}} - S_{\text{Titanium}}) \cdot \Delta T$$

Cycling temperature profiles

Generated temperature differences between 5 K and 90 K

Surface resistance measurements

Results

Clear increase of R_{res} with ΔT

Initial cool down (very different temperature profile due to LHe filling from bottom)

→ difficult to "compare apples with oranges"

Lowest limit achieved Residual resistance due to other mechanisms or ambient magnetic field

$$U_{\text{thermo}} = (S_{\text{Niobium}} - S_{\text{Titanium}}) \cdot \Delta T$$

U_{thermo} drives thermocurrent and thus generates extra ambient field

Discarded reasons for R_{res} variation

Hypothetical reasons for the improvement of R _{res}	Not the reason here because	
surface morphology		
RRR	same cavity	
crystallinity, granularity		
total hydrogen content		
systematic differences	measurement taken in same run	
calibration errors		
magnetic shielding efficacy	shield μ _r constant	
adsorbate removal	process irreversible	
Q-disease	never leads to	
	decrease of R _{res}	

Chronological order of measurements

Procedure	$R_{res}(n\Omega)$	ΔR_{res}	ΔΤ
Cooldown	11.7	1	150
Cycle 1	6	decrease	~5.5
Cycle 2	5.6	decrease	~5.5
Cycle 3	13.9	increase	90
Cycle 4	5.4	decrease	~5.5
Cycle 5	5.5	increase •	~5.5
Cycle 6	7.2	increase	45
Cycle 7	5.5	decrease	~5.5
Cycle 8	9.6	increase	67

Change in R_{res} reversible

Conclusion and outlook

- Improve residual resistance by thermal cycling
- Factor of 2 improvement and reduction is demonstrated depending on cycling conditions.
- Thermocurrents most plausible explanation as a source of additional magn. flux that is trapped during the SC transition.
- Implement additional step in standard cavity cooldown procedure.
 - Pause cooldown a little above T_c long enough to reach thermal equilibrium (presumably > 12 hours)
 - Alternatively, introduce additional short thermal cycle above T_c.
- Implemented in HoBiCaT procedure, but cryoplant currently down so that tests have not yet been possible.