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QUEST FOR HIGH Q,: RESIDUAL RESISTANCE ELIMINATION
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@ed vortices under rf field up to 100% of ambient field)
Lossy oxides or metallic hydrides on surface

Grain boundaries

Precipates

Generation of hypersound
Localized electron surface states
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TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

N

Reduction of trapped vortices Impact of trapped vortices on losses

oc B

—> Phys Rev B 87, Gurevich and Ciovati (2012)

Shielding (earth field) R

Can we reduce pinning centers?
Impact niobium material properties
the trapping behavior?

residual applied

Empiric: 1uT<3.5nQ (TESLA)

Are there additional ways to optimize

Meissner effect? —> Phys. Rev. STAB 3, B. Aune, et al. (2000)

Do temperature gradients generate
trapped flux?

—> Vogt, Kugeler and Knobloch, PRSTAB (accepted for publication, Sept. 11, 2013)



MODEL SYSTEM

* Mimics thermoelectric properties of cavity-tank system
* Nb rod 300RRR (84x84x300mm

* 3 FM probes (1nT resolution) c¢x ‘l’ ‘ ‘ ‘ ‘ ‘m

7 Cernox sensors
e Conduction cooled (LHe)
2 heaters

e Shielding (50nT ambient)
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MODEL SYSTEM: THERMOCURRENTS

T A
Change
AT@T. AT@T,
TC
System settles
B A Measure
| trapped flux o

Titanium short

Fluxgate
Magnetometer Heater
2 1@ Niobium rod %
. 1t P
I_. Cernox sensores HeImhoItzT
X Y coil fied
[ 72K |

Two contact points on different
temperatures

Level of trapped flux correlates with
AT at the instance of phase
Transition. Thermoelectric effect:

B<>I1=AV/R=AS-AT/R

Thermopower of System AS =S, - Sy;



MODEL SYSTEM: THERMOCURRENTS

* Two contact points on different ot

temperatures
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Magnetometer Heater

. Niobium rod <4
Level of trapped flux correlates with AT at

the instance of phase
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MODEL SYSTEM VS. DRESSED CAVITY: TEST 1
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— —> Kugeler, Vogt and Knobloch, SRF2013, TUIOAO01 7
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MODEL SYSTEM VS. DRESSED CAVITY: TEST 2

Is this measurement able to explain the observed variation in R _.?

B&>I1=AV/R=AS:-AT/R

Thermopower: AS = 10uV/K
Literature is not consistent for titanium.

Independent measurement performed —> J. Milck, Tech. Rep., Hughes Aircraft Company (1970)
in HoBIiCaT.

Parameter of cavity-tank system @10K:
R = 100uQ (dominated by titanium tank)

= 10uV/K - 100K / 100uQ = 1A

0 20 40 60 tIminl 8



MODEL SYSTEM VS. DRESSED CAVITY: TEST 2

B&<>I1=AV/R=A4S-AT/R=10uV/K- 100K/ 100uQ = 1A

TESLA half cell, TM,,, i—-mode, surface H-field
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MODEL SYSTEM VS. DRESSED CAVITY: TEST 2
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TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

d

Reduction of trapped vortices

e Shielding (earth field)

* Do temperature gradients generate
trapped flux?

e Can we reduce pinning centers?
Impact niobium material properties
the trapping behavior?

* Are there additional ways to optimize
Meissner effect?

N

Impact of trapped vortices on losses

R o B

—> Phys Rev B 87, Gurevich and Ciovati (2012)

residual applied

Empiric: 1uT<3.5nQ (TESLA)

—> Phys. Rev. STAB 3, B. Aune, et al. (2000)
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FLUX TRAPPING IN DISK-SHAPED NIOBIUM SAMPLES
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FLUX TRAPPING IN DISK-SHAPED NIOBIUM SAMPLES

n Crystal structure Fraction of trapped flux

Polycrystalline None 100%
Polycrystalline BCP 100%
Polycrystalline BCP + 800°C bake out  (83.1 &= 0.8)%

o U1 A W N -

Single crystal BCP 2.9+0.11Inv) £ 0.8]°
Single crystal BCP + 800°C bake out [(61.6 + 1.3 Inv) £ 0.8]%
Single crystal BCP + 1200°C bake out 42.1 +0.13 Inv) &= 0.6]%

—> Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012) /

depends on cooling rate v = AT/At

Consistant with results that Q’s of large grain cavities are greater.
For example W. Singer, MOIOAQ3: “Large grain cavities on average have
60% higher Q”
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TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

d

Reduction of trapped vortices

e Shielding (earth field)

* Do temperature gradients generate
trapped flux?

e Can we reduce pinning centers?
Impact niobium material properties
the trapping behavior?

* Are there additional ways to optimize
Meissner effect?

N

Impact of trapped vortices on losses

R o B

—> Phys Rev B 87, Gurevich and Ciovati (2012)

residual applied

Empiric: 1uT<3.5nQ (TESLA)

—> Phys. Rev. STAB 3, B. Aune, et al. (2000)

14



COOLING RATE

 Ambient field increased to 3uT (0.3uT in FM1 direction)
* Vary cooling rate during isothermal cooldown (max AT < 0.1K)
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INCREASED FLUX MOBILITY CLOSE TO TRANSITION TEMPERATURE
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INCREASED FLUX MOBILITY CLOSE TO TRANSITION TEMPERATURE

Level ambient field
Initially expelled flux:

AB = 50nT
Increased expelled flux

4 X more flux expelled

Increasing Meissner effect

15
—> Vogt, Kugeler and Knobloch, IPAC2013, WEPWO0O004

Increased flux mobility close
to transition temperature
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INCREASED FLUX MOBILITY CLOSE TO TRAN

Slower coolingrate = niobium longer
in region with increased flux mobility
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SUMMARY

Do temperature Thermoelectrically induced | Avoid temperature

gradients generate magnetic fields exist and get | gradients as you

trapped flux? trapped in sc niobium. transition to the SC
state!

Can we reduce pinning Material defects and Use large grain material

centers? Impact niobium | contaminants affect trapped | and/or high

material properties the | fluX temperatulre

trapping behavior? treatment:

Are there additional Flux shows increased Decrease cooling rate

ways to optimize mobility close to transition near T_ to take

Meissner effect? temperature advantage of increased
flux mobility!

ﬂ * Cavity cooldown without AT (time to settle
before transition or add cycling)

* Cool slowly and smoothly through T,

—> \Vogt, Kugeler and Knobloch, PRSTAB (accepted for publication, Sept. 11, 2013)



High Q, research: The dynamics of flux trapping in sc niobium
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