

HIGH Q₀ RESEARCH: THE DYNAMICS OF FLUX TRAPPING IN SC NIOBIUM

Julia Vogt, Oliver Kugeler and Jens Knobloch, Helmholtz-Zentrum Berlin, Germany

QUEST FOR HIGH Q₀: RESIDUAL RESISTANCE ELIMINATION

$$G/Q_0 = R_{surface} = R_{BCS}(f,T) + R_{residual}(?)$$

- Trapped vortices under rf field (up to 100% of ambient field)
- Lossy oxides or metallic hydrides on surface
- Grain boundaries
- Precipates
- Generation of hypersound
- Localized electron surface states
- ...

→ Surface treatment,
Bake out

TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

Reduction of trapped vortices

- Shielding (earth field)
- Can we reduce pinning centers?
 Impact niobium material properties the trapping behavior?
- Are there additional ways to optimize Meissner effect?
- Do temperature gradients generate trapped flux?

Impact of trapped vortices on losses

 $R_{residual} \propto B_{applied}$

→ Phys Rev B 87, Gurevich and Ciovati (2012)

Empiric: $1\mu T \leftrightarrow 3.5 n\Omega$ (TESLA)

→ Phys. Rev. STAB 3, B. Aune, et al. (2000)

→ Vogt, Kugeler and Knobloch, PRSTAB (accepted for publication, Sept. 11, 2013)

MODEL SYSTEM

4.2 K

coil fied

MODEL SYSTEM: THERMOCURRENTS

Two contact points on different temperatures

Level of trapped flux correlates with ΔT at the instance of phase Transition. Thermoelectric effect:

$$B \longleftrightarrow I = \Delta V / R = \Delta S \cdot \Delta T / R$$

Thermopower of System $\Delta S = S_{Nb} - S_{Ti}$

MODEL SYSTEM: THERMOCURRENTS

Two contact points on different temperatures

Level of trapped flux correlates with ΔT at the instance of phase Transition. Thermoelectric effect:

Thermoelectrically induced magnetic field gets trapped in sc niobium!

Measure tell Is this measurement able to explain during phas the observed variation in R_{res}?

System settles

Measure trapped flux

Titanium short

Z

Heater

Fluxgate

Magnetometer

Cernox sensores

Heater

Niobium rod

Helmholtz coil fied

0.12μT trapped in a TESLA Cavity:

$$\rightarrow \Delta R_{res} = 0.4 n\Omega$$

Kugeler, Vogt and Knobloch, SRF2013, TUIOA01 7

Is this measurement able to explain the observed variation in R_{res}?

Thermopower: $\Delta S \approx 10\mu V/K$ Literature is not consistent for titanium. Independent measurement performed in HoBiCaT. Parameter of cavity-tank system @10K: $\mathbf{R} \approx \mathbf{100}\mu\Omega$ (dominated by titanium tank)

-> J. Milck, Tech. Rep., Hughes Aircraft Company (1970)

$= 10\mu V/K \cdot 100 \text{K} / 100\mu\Omega = 1A$

$B \leftrightarrow I = \Delta V / R = \Delta S \cdot \Delta T / R = 10 \mu V / K \cdot 100 K / 100 \mu \Omega = 1 A$

TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

Reduction of trapped vortices

- Shielding (earth field)
- Do temperature gradients generate trapped flux?
- Can we reduce pinning centers?
 Impact niobium material properties the trapping behavior?
- Are there additional ways to optimize Meissner effect?

Impact of trapped vortices on losses

$$R_{residual} \propto B_{applied}$$

→ Phys Rev B 87, Gurevich and Ciovati (2012)

Empiric: $1\mu T \leftrightarrow 3.5 n\Omega$ (TESLA)

→ Phys. Rev. STAB 3, B. Aune, et al. (2000)

FLUX TRAPPING IN DISK-SHAPED NIOBIUM SAMPLES

Helmholtz coil applies magnetic field

Field cooled

Measure magnetization

Sample

Courtesy: Sarah Aull

FLUX TRAPPING IN DISK-SHAPED NIOBIUM SAMPLES (≈300RRR)

#	Crystal structure	Treatment	Fraction of trapped flux
1	Polycrystalline	None	100%
2	Polycrystalline	ВСР	100%
3	Polycrystalline	BCP + 800°C bake out	$(83.1 \pm 0.8)\%$
4	Single crystal	ВСР	$[(72.9 + 0.1 \text{ lnv}) \pm 0.8]\%$
5	Single crystal	BCP + 800°C bake out	$[(61.6 + 1.3 \text{ lnv}) \pm 0.8]\%$
6	Single crystal	BCP + 1200°C bake out	$[(42.1 + 0.13 \text{ lnv}) \pm 0.6]\%$

[→] Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012)

depends on cooling rate $v = \Delta T/\Delta t$

Consistant with results that Q's of large grain cavities are greater. For example W. Singer, MOIOA03: "Large grain cavities on average have 60% higher Q"

TRAPPED VORTICES UNDER RF FIELD

TRAPPED VORTICES UNDER RF FIELD

Impact of trapped vortices on losses

- Shielding (earth field)
- Do temperature gradients generate trapped flux?

Reduction of trapped vortices

- Can we reduce pinning centers?
 Impact niobium material properties the trapping behavior?
- Are there additional ways to optimize Meissner effect?

 $R_{residual} \propto B_{applied}$

→ Phys Rev B 87, Gurevich and Ciovati (2012)

Empiric: $1\mu T \leftrightarrow 3.5n\Omega$ (TESLA)

→ Phys. Rev. STAB 3, B. Aune, et al. (2000)

COOLING RATE

- Ambient field increased to 3μT (0.3μT in FM1 direction)
- Vary cooling rate during isothermal cooldown (max $\Delta T < 0.1K$)

INCREASED FLUX MOBILITY CLOSE TO TRANSITION TEMPERATURE

INCREASED FLUX MOBILITY CLOSE TO TRANSITION TEMPERATURE

t [min]

Vogt, Kugeler and Knobloch, IPAC2013, WEPWO004

INCREASED FLUX MOBILITY CLOSE TO TRANSITION TEMPERATURE

Slower coolingrate = niobium longer in region with increased flux mobility

Sarah Aull et al., SRF2013, WEIOC01 RF measurements demonstrate that R_s is impacted by the cooling rate

SUMMARY

Do temperature gradients generate trapped flux?	Thermoelectrically induced magnetic fields exist and get trapped in sc niobium.	Avoid temperature gradients as you transition to the SC state!
Can we reduce pinning centers? Impact niobium material properties the trapping behavior?	Material defects and contaminants affect trapped flux	Use large grain material and/or high temperature treatment!
Are there additional ways to optimize Meissner effect?	Flux shows increased mobility close to transition temperature	Decrease cooling rate near T_c to take advantage of increased flux mobility!

- Cavity cooldown without ΔT (time to settle before transition or add cycling)
- Cool slowly and smoothly through T_c

THANK YOU FOR YOUR ATTENTION

Acknowledgement:

Hans-Peter Vogel and Peter vom Stein (RI), Peter Kneisel and Rong-Li Geng (J Lab), Enzo Palmieri (INFN-Legnaro) for providing the samples.

To our engineers André Frahm, Michael Schuster, Sascha Klauke, Dirk Pflückhahn, Stefan Rotterdam, Axel Hellwig for patient support and