

STATUS AND CHALLENGES OF SPIRAL2 SRF LINAC

R. Ferdinand

P-E. Bernaudin, P. Bosland, M. Di Giacomo, Y. Gómez Martínez, G. Olry

SPIRAL2 Scientific objectives

- Strong demand of radioactive beams by the nuclear and astrophysics communities (Prod)
 - Establish a bridge between nuclei-nuclei interaction and underlying quarks and gluons
 - Produce RIB using the ISOL technique
 - 10⁹ pps for 132Sn, 10¹⁰ pps for 92Kr
- Research with high intensity stable beams (S3)
 - low-energy in-flight techniques using stable beam
 - N=Z, nuclear structure study through collisions, chemical and physical studies of heavy and super heavy elements,
 - Ions-ions collisions
- Neutron for science (NFS) and interdisciplinary studies :
 - Production of an intense neutron flux
 - Material irradiation, cross section measurements (for ADS, generation IV, fusion etc...)

Regions of the Chart of Nuclei Accessible

Phase1 objective:

Increasing the stable beam power by a factor 10 to 100

Nominal operation of GANIL/SPIRAL2:

- ✓ up to 79 weeks/y of stable-ion beams
- ✓ up to 53 weeks/y of RIB
- ✓ up to 5 beams (2 RIB) simultaneously
- √ 800-900 users

Accelerator Baseline Configuration

Particles	H+	³ He ²⁺	D ⁺	Ions	
Q/A	1	2/3	1/2	1/3	1/6
I (mA) max.	5	5	5	1	1
W _O max. (MeV/A)	33	24	20	15	9
CW max. beam power (KW)	165	180	200	44	48

Total length: 65 m (without HE lines)

Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers

12 QWR beta 0.07 (12 cryomodules)

14 (+2) QWR beta 0.12 (7+1 cryomodules)

1.1 kW Helium Liquifier (4.5 K)

Room Temperature Quadrupoles

Solid State RF amplifiers (10 & 20 KW)

6.5 MV/m max $E_{acc} = V_{acc}/(\beta_{opt}\lambda)$ with $V_{acc} = \int E_z(z)e^{i\omega z/c}dz$.

SPIRAL2 Challenges

- Huge number of different beams
 - Intensities (diagnostics), energies (cavities and RF), particles (facility operation, safety)
- Accelerator components
 - Heavy Ion source (1mA Ar¹²⁺)
 - RFQ transmission + frequency (88MHz) -> tolerances
 - Cryomodules
 - ▶ 6.5 MV/m in operation
 - Separate vacuum, compactness (transition and helium buffer)
 - Safety issues
 - Losses < 1W/m</p>
 - Tunnel accessibility, Nuclear ventilation
 - earthquake
- RIB Production module (primary beam : D+, 200kW)
 - Reliability, maintenance
 - Connections
 - UCx oven
 - D n Converter and delay window

LINAC

SCLINAC

Beta o.o7 energy section

Beta 0.12 energy section

L≈32 m

Cryomodule A Cryomodule B Power coupler
CEA Saclay IPN Orsay LPSC Grenoble

Cryomodule	Α	В
Valve-to-valve length [mm]	610	1360
# cavities	12	14
f [MHz]	88.05	88.05
$eta_{\sf opt}$	0.07	0.12
Epk/Ea	5.36	4.76
Bpk/Ea [mT/MV/m]	8.70	9.35
r/Q [Ω]	599	515
Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66
Lacc [m]	0.24	0.41
Beam tube \varnothing [mm]	38	44

LINAC - CMA

 $\beta = 0.07$

Low beta cavity design

 $P_{cav} < 10 W @ 6.5 MV/m$ $P_{Cu} \sim 1.5 W @ 6.5 MV/m$

Stainless steel LHe tank

Bulk niobium cavity

Tuning system applicators

Indium gasket

Removable bottom plate (in copper)

- End plate sealing
 - Motivation: numerous leakage with helicoflex seal
 - Advantage: no leaks anymore, slightly better Q
 - ightharpoonup Disadvantage: indium is difficult to remove/clean \rightarrow no HPR after VC

f [MHz]	88.05
β_{opt}	0.07
E_{pk}/E_{acc}	5.36
B_{pk}/E_{acc} [mT/(MV/m)]	8.70
$r/Q[\Omega]$	599
V_{acc} @ 6.5 MV/m & β_{opt}	1.55
L _{acc} [m]	0.24
Beam tube \varnothing [mm]	38

Cryogenic changes

- Porous metallic plates ("Poral") in pyramidal shape to optimize helium phase separation
 + return of helium gas displaced for the thermosiphon
 - Motivation: cryogenic instability, helium level regulation difficult
 - Advantage: cryogenic system is now stable, no more "fake" losses

Low beta cavity status

- All cavities received and tested
- The spare cavity under repair
- Copper bottom cap and Indium seal
- Qi : 5,8.10⁵ to 1.1.10⁶

Zanon and SDMS cavities

Internal view of a cryomodule A

Cryomodule A general design

Magnetic shield (against the vacuum vessel wall)

Cryogenic connections (towards valves box)

Super-insulation

Tuning system
Beam gate valves (metal)

60K thermal screen

Specifications:

- Separate vacuum
- Static losses < 11 W
- Dynamic losses < 10 W per cavity for $E_{\rm acc}$ 6.5 MV/m

CMA conditioning method

- RF conditioning is required (coupler extremity)
- Room temperature up to 10kW, cw (≈1h)
- Again at 4.5k, cavity detuned
- Cavity tuned
 - up to 4 MV/m in CW mode, limited by RX
 - kind of High Peak Power Processing, 50Hz
 - Duty cycle is limited to level accepted by the cryogenics (≈15 to 30%)
 - RF power to ignite the electronic emission sites, at the quench limit.
 - Rise progressively Pi up to full power (8-10kW), field at the end up to 8 to 10MV/m

Decreasing τ 2ms /6db

Some CMA tests results

- Sequential cooling (thermal shield cooled down first during 1 day) Cavity cool down 250K -> 4K: < 1 hour (except cavity bottom)
- - Mean static losses: 4.3 W (Specs < 8.5W)

Cryomodules A - β = 0.07

CMA status

- Cavities :
 - All cavities qualified
 - spare cavity being repaired by manufacturer
- Cryostats :
 - Eight cryomodules assembled, 6 tested
 - All CMA to be delivered to GANIL before end 2013

LINAC-CMB

 $\beta = 0.12$

Cryomodule B

High beta cavity design

Welded bottom end

· Titanium LHe tank

Plunger based tuning system

f [MHz]	88.05
$\beta_{\sf opt}$	0.12
E_{pk}/E_{acc}	4.76
B_{pk}/E_{acc} [mT/(MV/m)]	9.35
r/ Q [Ω]	515
\mbox{V}_{acc} @ 6.5 MV/m & $\beta_{\mbox{\scriptsize opt}}$	2.66
L _{acc} [m]	0.41
Beam tube \emptyset [mm]	44

CMB status

Baking

Some CMB tests results

- 2011 tests: pollution (X rays near cavity >100 mSv/h)
- Latest test showed good results (rust parts and new coupler preparations)
- Had some concern with "negative backlash" of tuning system: due to mechanics. Solved.

CMB status

- Cavities :
 - All cavities have been qualified without and with plunger
- Cryostats:
 - Two cryomodules validated with respect to RF, vacuum and cryogenic loss requirements (one is misaligned)
 - One cryomodule already delivered to GANIL
 - All cryomodules B to be delivered to GANIL before sept .2014
 - All difficulties solves (hopefully!)

MOPO10 G. olry, et al Spiral2 Cryomodules B Tests Results

Transportation test

Cryomodule status

	Unit	Specs	CMA4	CMA6	CMA7	CMA2	CMA3	CMA5
Max. acc. Gradient	MV/m	>6.5	8.8	8.3	9	9.1	7.95	9.1
Total losses @4K, 6.5MV/m	W	<20.5	20.8	11.4	11.8	15.56	17.9	11.3
Static losses @4K	W	<8.5W	6.5	3.98	4.1	3.11	4.34	3.6
Pressure sensitivity	Hz/mbar	<5	-1.58	-1.32	-1.45	-1.31	-1.08	-1.22
Beam vacuum leaks	mbar.l/s	<5e-10	9.5E-10	< 1e-10	< 1e-10	< 1e-10	< 1e-10	<1e-10
Cavity alignment	mm	1.3	0.52	0.4	0.48	1.46	0.4	
	Unit	Specs	CM	IB1	CIV	1B2		
Max. acc. Gradient	MV/m	> 6.5	>8.0	>8.0	>8.0	>8.0		
Total losses @4K, 6.5MV/m	W	< 36.0	29	.5	3	2		
Static losses @4k	W	<12.5	1	7	1	8		
Pressure sensitivity	Hz/mbar	< 8.0	5.7	5.1	5.3	5		
Beam vacuum	mbar	< 5.0e-7	< 6.0e-8		< 6.0e-8			
Beam vacuum leaks	mbar.l/s	< 5e-10	< 1e	< 1e-10 < 1e-10				
Cavity alignment	mm	© 1.2	0.16	0.34	0.88	2.54		
Cavity alignment	mm	① 1.2	0.16	0.34	0.88	2.54		
Beam vacuum leaks	mbar.l/s	< 5e-10	< 16	-10	< 16	-10		
Beam vacuum								
						38		2017

Cryomodules preparation and assembling

Cryomodules A: no more HPR rinsing between VC test and CM assembly (slow refilling with filtered N)

(Coupler prepared in LPSC clean room)

RF power coupler

- Validated up to 4okW CW in traveling wave
- 20 were conditioned up to 20kW CW in standing wave (open circuit)
- Time is now shorter than one hour
- Plan to finish the preparation of all the couplers by Christmas 2013

Success story

THP054, Y. Gómez Martínez et al Last Spiral 2 Couplers Preparation and RF Conditioning

Coupler design

- Same coupler for both cavities
- Different coupling (5.5 105 and 1.0 106) achieved by a different antenna penetration depth

Hollow antenna

Ceramic window (uncoated)

Electrons pickup

Ceramic (air) cooling pipe

Coupler design

- E up to 12 MV/m (CMA) at the antenna extremity for nominal accelerating gradient (accelerating gap area around 37 MV/m)
- Static + dynamic losses 1.0 to 1.5 W (as computed and as measured)
- No MP above 150 W of forward power

Warm section – GANIL and IPN

Diagnostics box

Beam axis

Many functions:

- correct the position (QWR, errors)
- transverse tuning of the Linac using the quadripolar moments
- Beam phase measurem.
- Time of flight measurement

LINAC Warm Sections activities...

clean room (iso5) assembly

on alignment bench

Connexion test with a CMA

Tunnel installation under laminar flow (iso5)

LINAC Liquefier

Heat loads and liquefier

Cryomodule model	Α	В
β cavity	0.07	0.12
Number of cavities	1	2
Length [m]	0.65	1.4
Overall height [m]	3.25	3.15
Static heat load @ 4.4 K [W] (w coupler)	8.5	12.5
Dynamic heat load @ 4.4 K [W]	12	22
Heat load @ 6o K [W]	40	60

Valve box and associated transfer line sectors	
Type A quantity	12
Type B quantity	7
External diameter [m]	0.7
Height [m]	1.2
Regulating He cryogenic valves	5
Static heat load @ 4.4 K [W]	8
Power @ 6o K [W]	25

	SPIRAL2 values
Power capacity at 4.4 K	1100 W
Power capacity at 6o K	3000 W
Liquefaction at 4.4k	10l/h
Dewar pressure	1.3 bar
He in the tunel	1800l
Pressure stab. <1s	+/- 3mbar
Max slope	100 mbar/h

RF SYSTEM

- Independently phased cavities (one power chain and control feedback per cavity)
- One operating frequency: 88.05250 MHz
- Amplitude stability: 1%
- Phase stability : 1°
- Solid state technology based on 3 kW modules
- 2.5 kW, 5 kW, 10 kW and 19 kW units
- Class AB for linearity, phase stability on large dynamics range (35 dB)

Process installation

Conclusion

- SPIRAL2 : a major nuclear facility
 - Complementary to existing and futur facilities
 - broad range of research in GANIL
- Major parts are now constructed and under installation
- Cryomodules are now in a routine assembly process and testing
 - Six A-type cryomodules ready for installation,
 - One B-type cryomodule also, delivered to GANIL
- First source beam tests expected by mid 2014, or as soon as possible
- Linac installation : January next year
- at 4 k by the end of the year.

