
Quench and high field q-slope studies 
using a single-cell cavity with 

artificial pits 

Yi Xie 
Superconducting RF group, Cornell University 

Now at Euclid Techlabs LLC. 

 

1 Yi Xie, SRF2013, Paris 



2 

This talk is adapted from part of my 
PhD defense presentation at  

Cornell University 

Yi Xie, SRF2013, Paris 



Development of Superconducting RF 
Sample Host Cavities and Study of Pit-

induced Cavity Quench   
Yi Xie 

Department of Physics, Cornell University 
Jan 10, 2013 

 

3 Yi Xie, SRF2013, Paris 



Outline 

• Pit cavity experiment; 
  Motivation and experiment setup; 
  Experiment results and analysis; 
  Key achievements:  
Proves that pit with sharp edge will cause quench; 

• Conclusions; 
• A general rf heating simulation code for  
   SRF community. 
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Why study pits 
Pits are identified as sources of quench mostly below 
25MV/m. Some pits will cause cavity to quench but 
some bigger pits don’t cause quench. 

200 μm 

Quenched at 22 MV/m (Cornell) Φ~1mm pit, no quench (FNAL) 
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 Open question: Why some pits cause quench, 
some are not? What are the relevant parameters?  
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A possible explanation: Magnetic field 
enhancement (MFE) at pit edges  
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A possible explanation 
Due to magnetic field enhancements at the pits 
edge, some of the smaller pits with sharp edges 
may reach Nb superheating field earlier than 
some bigger pits with shallow edges; 

500 um 

Magnetic field enhancement factor:  

Valery Shemelin and Hasan Padamsee’s  
initial idea and then I redid the pits 
simulation using ACE3P 
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Magnetic field enhancement factor calculation by ACE3P 
using a 3-d model. The fit equation is β = 1.17 ∗ (r/R)−1/3. 
 

MFE 
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MFE 

Magnetic field enhancement near the pit edge. 

Current flow 



To systematically study pits, we need statistics, 
so I made a cavity with lots of artificial pits with 

different sizes R. 
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A pits cavity 

• I artificially created pits with five sizes on a single cell  
     Nb cavity, three of them on each half cup before welding,  
     all together 30 pits; 
          Radius: 200 μm, 300 μm, 400 μm, 600 μm, 750 μm; 
          Depth: 1.5mm; 
• The cavity received 120um BCP and in-situ 120 C bake; 
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T-map 
• For every pit, I used Cornell single-cell T-map system to  
     record the temperature rise as a function of magnetic field; 
• The cavity reached ~ 550 Oe (55 mT) on the  
      quenched pits surface; 

~ 650 sensors, nΩ sensitivity!  
Some Q-drop effects kicks in 
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                      A typical T-map at ~ 500 Oe (50 mT) 
                 Note the bigger pits shows bigger heating 

T-map 
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 Quench locations 
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The quench 
locations were 
found by 
measuring the 
length of time 
that the 
resistors stayed 
warm after the 
quench of the 
cavity 

T(s) 



For two quenched pits, both show gradual heating until  
sudden jump to ~ 1K range, which may indicates pits go 
normal conducing; 

Quench pits 
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Normal conducting region, T = 5.76K > Tc=Tc0*sqrt(1-H/H0)=5.4K, 
Here H is slightly below quench field. 

Normal conducting region exists! 
My ring-type defect model simulations show that there is a thermally 
meta-stable state below quench field for pit-like defects. At this state, 
only the edge of the pits will get normal conducting. 

Radial distance from pit center  

3mm Nb 
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K(T) 



1500 μm 

Optical inspection after test Laser confocal microscope of pit edge 

For the quenched pits, R~750 um, r ~ 10 um, using MFE 
formula we can get MFE factor ~ 4. Which is in good 
agreement with pits cavity quench field 55 mT (assuming 
Nb superheating field ~ 200 mT)! 

Optical images 
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Laser confocal microscopy 
Laser confocal microscopy was used to obtain the precise 
Values of pit edge radius r. 

Replica of cavity pits Pit sample area 
Since magnetic field is parallel to cavity  
equator, so edges of pits perpendicular 
to the direction of the magnetic field show  
highest fields due to MFE effect. So we only 
sample area indicated above.  

How to get pit edge radius r 
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Laser confocal microscopy 

Range of pit edge radius r of three pits with the  
biggest drill bit radius R =750 μm 
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Laser confocal microscopy 
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How does magnetic enhancement model apply to 
those pits geometrical information 
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MFE at pit edges 
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MFE theory suggests that the edge of  
pit #30, #28, #22 will go to  

normal conducting first,  
Is it that true?  
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Heating vs magnetic field level for pit #30 
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Jump! 

Yi Xie, SRF2013, Paris 



Heating vs magnetic field level for pit #28 
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Jump! 
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Heating vs magnetic field level for pit #22 
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Jump! 
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MFE theory suggests that the edge of  
pit #27 will go normal conducting at higher 

fields compared with pit #30, #28,  
Is it that true?  
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Heating vs magnetic field level for pit #27 
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pit #27  

pit #30  pit #28  
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Non-quench pits 

For different size pits, it appears heating generally increases  
along with pit diameter R which is also consistent with MFE  
model since our bigger pits have bigger MFE factor.  
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pit #2  

pit #6  

Ohmic  
heating 
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Non-quench pits 
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pit #20 
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Non-quench pits 

Ohmic heating 

Field dependent BCS 
resistance 

Rs ~ H 4~6 

Rs ~ H 2 
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pit #19 

Non-quench pits 
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Non-quench pits 

pit #24 
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Non-quench pits 
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Non-quench pits 

• Low field: H^2 heating; 
• Higher field: with the magnetic field to a power of 4 

to 6 at medium fields, and with a power of ∼ 2 of the 
high fields above 1300 Oe; 

• The transition to field dependent surface resistance 
happens at fields similar to where the high field Q-
slope starts in BCP cavities ( ∼ 900 Oe); 

• The pit heating data shows that a BCP cavity surface 
can reach high fields close to the superheating field. 



Summary & Outlook 

• Pit cavity experiments and simulations verify that 
MFE enhancement will cause pit edge nc first. Then 
the nc will spread and cause the whole cavity 
quench. Pit cavity is able to separate thermal effects 
from q-slope information. 

• Pit cavity is a powerful tool to explore basic SRF 
niobium materials properties. 

• Repeat what I did, just EP the cavity, see what the 
slope looks like. 
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Advertisement for a general rf heating 
simulation code 
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• Four running modes; 
  Simple defect free 1-D;  
  Defect case with disk-type and ring-type; 
  Multilayer cases: niobium on copper, Gurevich’s coating; 

• User can define niobium/helium properties 
(modular); 
  Basic: RRR, R0,f, PMFP => Rbcs, Kappa, Kapitza  
 Advanced: user can write their own Rbcs/Rres,  
    Kappa and Kapitza resistance formula; 

• User can define mesh configurations; 
   Flexible control mesh density near defects or the different 
     layers; 

 
 

Code capabilities 



Application examples 

• Fermilab crab cavity version: wall thickness;  
• Fermilab 650 MHz: RRR selection; 
• Will nitrate coating affect niobium outside  
   surface thermal properties? 
• Material and thickness choices for  
   niobium-copper and multilayer-coating; 
• More important: defect and quench modeling; 

 
You can download the whole code (include sources): 
https://www.dropbox.com/sh/3qtzz4tpvq458hr/cNqY7UrLTc 
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