ANALYSIS OF POST-WET-CHEMISTRY HEAT TREATMENT EFFECTS ON NIOBIUM SRF SURFACE RESISTANCE

Pashupati Dhakal, Giangulai Ciovati, Peter Kneisel and Ganapati Rao Myneni Jefferson Lab, USA 09/24/2013

R&D on SRF

- Driven by Project Need
 - * CW applications
 - * Pulse applications
 - * High current
 - * 4.2 K applications
- Conventional R&D
 - * Maximize E_{acc} and Q₀
 - * Search for alternative materials
 - * Process improvement

Overall goal : Minimize construction and operation cost with reliable and efficient SRF cavities

Quality Factor and Surface Resistance

Quality Factor $(Q_0) = G/R_s$

G = Geometry factor (shape dependent)

$$\mathsf{R}_{\mathsf{s}} = \mathsf{R}_{\mathsf{res}} + \mathsf{R}_{\mathsf{BCS}}(\mathsf{f}, \mathsf{T}, \Delta, \lambda_{\mathsf{L}}, \xi_0, \mathsf{I})$$

Possible sources of R_{res}

- Trapped magnetic field
- Normal conducting precipitates
- Grain boundaries, dislocations
- Interface losses
- Subgap states

Remedies:

- High treatment heat treatments
- Magnetic shielding

At temperature below 2K, R_s is dominated by R_{res}

Quality Factor and Surface Resistance

BCS surface resistance results from the interaction between the RF electric field within the penetration depth and thermally activated electrons in a superconductor.

$$\mathsf{R}_{\mathsf{BCS}}(\mathsf{f}, \mathsf{T}, \Delta, \lambda_{\mathsf{L}}, \xi_0, \mathsf{I}) = (Af^2/T) e^{-\Delta/k} B^{Tc}$$

Minimizing BCS Resistance

- Lower frequency
- Higher T_c superconductors
- Higher energy gap
- Optimal electronic mean free path

Typical SRF cavity Processes

- ~150 μ m heavy BCP/ CBP
- Heat treatment 600-800 °C
- •
- High Pressure Rinse with DI water
- Low temperature baking (100-140 °C for 12-48 hours)
- RF Test

Note: Surface chemistry of ~20 μm is like making new cavity surface

High Temperature Heat Treatment

1970s → ~1800 °C UHV HT for ~10 hrs.
1980s → ~1300 °C solid state getter, such as Titanium, was used in-side the furnace to "post-purify".
2000s → 600-800 °C, mainly just to degas hydrogen absorbed by the Nb during cavity fabrication and surface treatments.

BCP/ EP needed to remove "polluted" layer after HT
Reintroduces hydrogen
May be the cause of strong RF losses

Standard (600-800 °C) Furnace Treatment

The standard furnace used for the high-temperature heat treatment of SRF cavities is an ultra-high-vacuum furnace with molybdenum hot-zone; molybdenum (or tungsten) resistive heating elements and cavities are heated by radiation from the heating elements.

September 23-27, 2013

FIGURE 1. SIMS mass spectra showing difference in H between (a) non-heat treated and (b) heat treated sample.

Ciovati et al, PRSTAB 13, 022002 (2010)

Jefferson Lab

Earlier Results (No post chemistry)

TABLE III. Values of Δ/k_BT_c , R_{res} , $R_{BCS}(4.3 \text{ K}, \approx 10 \text{ mT})$, $Q_0(100 \text{ mT})^a$, $B_{p,max}$, and improvement factors of $Q_0(100 \text{ mT})$, $B_{p,max}$ over the baseline test for all the cavities and rf tests described in Secs. VA 1–VA 4.

			R _{res}	$R_{\rm BCS}$	$Q_0(100 \text{ mT})$	$B_{p,\max}$	Q_0	$B_{p,\max}$
Cavity	Treatment	Δ/k_BT_c	$(n\Omega)$	$(n\Omega)$	$(\times 10^{10})$	(mT)	improvement	improvement
	Baseline 1	1.75	11.1	1068	1.05	118		
	(20 µm BCP)							
	Heat treatment 1	1.87	10.3	825	1.52	134		
	(800°C/3 h, 400°C/20 min N ₂)							
	Baking (120°C/12 h)	1.97	9.7	614	1.88	136		
	Baseline 2 (5 μ m BCP)	1.79	5.6	971	0.91	108		
	Heat treatment 2	1.90	8.4	675	1.13	118		
	$(800^{\circ}C/3 h, 400^{\circ}C/20 min N_2,$							
	120°C/6 h)							
	Baseline 3 (2 μ m BCP)	1.80	7.9	933	1.07	112		
	Heat treatment 3	1.92	3.2	697	1.89	112		
	(800°C/3 h, 400°C/20 min)							
	Baseline	1.75	4.7	782	0.75	109		
	$(10 \ \mu \text{m BCP}, 600^{\circ}\text{C}/10 \text{ h}, 13 \ \mu \text{m BCP})$							
	Heat treatment	1.87	4.8	576	1.05	117		
	(800°C/3 h, 400°C/20 min N ₂ ,							
	120°C/6 h)							
	Baking (120°C/48 h)	1.98	8.2	414	0.94	115		
	Baseline (122 μ m VEP)	1.80	5.7	724	0.92	122		
	Heat treatment	1.85	4.5	656	1.46	137		
	(800°C/3 h, 400°C/20 min)							
	Baking (120°C/24 h)	2.00	7.9	437	1.40	179		
	Baseline 3 (1 μ m BCP)	1.83	4.9	831	1.16	119		
	Heat treatment	2.00	4.2	412	1.44	128		
	(800°C/3 h, 120°C/12 h)							

^aThe values of $Q_0(100 \text{ mT})$ were measured at 2.0 K, except for the first tests of the large-grain CEBAF cavity when they were measured at 1.7 K.

G. Ciovati et al., Phys. Rev. ST Accel. Beams 13, 022002 (2010)

Jefferson Lab

Fine-Grain 9-cell cavity results

9- cell cavity results with no chemistry after 800 C HT

No chemistry after high temperature heat treatment Only requirement in clean furnace

R. Geng, 2010

Induction Heating

New "All Nb" furnace is designed with induction heating.

Production Furnace

Dhakal et al, Rev. Sci. Instrum. 83, 065105 (2012)

Induction Heating

- Heat the cavity in all Nb environment to the target temperature
- Introduce pure Ar while cooling down (this will dilute H₂ and minimize reabsorption)
- Vent the furnace with dry oxygen for better oxidation of the surface of cavity (Surface Passivation)

Typical heating curve

R_s vs T data

P. Dhakal et al., Phys. Rev. ST Accel. Beams 16, 042001 (2013)

HT extended up to 1400°C with new furnace

• Ingot Nb cavity from CBMM (RRR~200, Ta~1375 wt.ppm), treatment sequence after fabrication: CBP, BCP, HT, HPR

Samples' analysis after 1400°C show:

Reduced H content and ~1 at.% Ti content

Higher energy gap and reduced broadening parameter

Phys. Rev. ST Accel. Beams 16, 042001 (2013)

Extended Q-rise

Multiple nano-removal, oxypolishing and EP was done

- No performance degradation while keeping in cabinet for a year
- Extended Q-rise present even after the removal of ~120 nm inner surface
- EP after 30 µm reproduce the baseline performance

HT results for "All Nb Cavity"

- 3 "all Nb" cavities (2 LG and 1 FG) are heat treated up to 1600 C
- Improvement in Q in medium field range up to ~70%
- Small Q-rise

HT results for Reactor Grade Nb

- RRR ~ 40
- Extended Q- rise up to 35 mT with factor of 2 improvement in Q at 20 MV/m
- Cavity was purified in the presence of Ti and surface removal of ~30 μm before the baseline test

Note: In early 80's those high Q cavities are made from reactor grade and heat treated at very high temperatures.

Some Theoretical Models on R_s vs B_p

- Halbritter model based on NbO_x clusters on the surface causes the low field Q-rise
- Two layer superconductors model on Q-rise
- Non-linear BCS and thermal feedback model
- Weingarten model based on the surface defects
- Numerical calculation based on the Mattis and Bardeen theory modified to account for moving Cooper pairs under the action of the rf field
 MOIOC02, TUP011

Future Works

- The reliability of the proposed process to obtain cavities with Q₀(2.0K, 90 mT, 1.5 GHz) of ~ 4×10¹⁰
- Investigation on the impact of surface impurities on the $Q_0(B_p)$ curve through cavity rf tests and studies on small samples cutout from the cavities.

Conclusions

- High temperature heat treatment without subsequent chemistry improves the Q₀ in medium field range, compared to that obtained after BCP and lowtemperature (120 C/48h) baking
- Q₀(2 K, 90mT) as high as 5x10¹⁰ at 1.5 GHz have been achieved because of an "extended" rise of Q₀ with increasing field
 - Related to the presence of impurities (Ti) near the surface
 - Understanding the origin of this effect is a new challenge in the R&D of bulk Nb

