Localization of field emitter in a 9-cell cavity

Yongming Li^{1,2}, Kexin Liu², Ari Palczewski¹, Rongli Geng¹

¹ Jefferson Lab

² Peking University

Content

1. Motivation

2. Localization of field emitter in a 9-cell cavity

3. Summary

1. Motivation

- Field emission/dark current issue of concern for SRF cavity performance and SRF linac operation
 - ILC, pulsed, pushing high gradient, driven by Epk
 - CEBAF and other future CW SRF linacs, driven by DF
- Complete understanding and reliable control of the issue is still needed in particular in multicell practical cavities
 - Dark current in multicell cavity
 - Where are the emitters
 - Origin of emitters
 - Impact to cryogenic load and machine operation

Goal

- Locate field emitter in multi-cell cavity
 - Develop a generic producer
 - Benchmark with vertically mul-ticell cavity test
 - Close loop by optical inspection of predict emitter site
 - Provide feedback for cavity string assembly
- Ultimate goal
 — to reduce & eliminate filed emission in multi-cell cavity

2. Full Scale multicell cavities and FN Law

QM tunneling theory predicts exponential Fowler-Nordheim emission current density

$$j(E) = \frac{A_{FN}(\beta_{FN}E)^2}{\varphi} \exp\left(-\frac{B_{FN}\varphi^{\frac{3}{2}}}{\beta_{FN}E}\right)$$

Trajectories of different Emitters

9-cell Model and Definition of Coordinate

3 Types of "Long Range" Trajectories

Emission in region >>> "Reverse type"

Emission in region >>> "Zigzag type"

Emission in region >>> "Forward type"

Impact position VS impact energy distribution

Position and phase distribution

1.0 Field emission (a) current density 0.5 Normalized Unit 0.0 Electric field -1.01 $\frac{3\pi}{2}$ 2π Initial Phase Reverse (b) Impact Energy [MeV] Forward Initial Phase

Position distribution

Phase distribution

Ratio of Electrons Escaping Cavity

$$R_{esp} = N_{esp} / N_{total}$$

$$R_{hc}=N_{hc}/N_{total}$$

- 1. R2 electron escaping rate is very high (0.5 at s=0.008m)
- 2. Most of electrons at hitting at cell 5 (emitter: IR5_RT)
- 3. R1 escaping is low compare with R2 (less than 8%)

Escaping Ratio

Escaping from Left Flange "Reverse type" trajectory

Escaping from Right Flange "Zigzag type" & "forward type" trajectory

Energy Deposit in Cavity

Emitter from reverse and zigzag regions [s] is very important considering the energy deposit in the cavity and escaping ratio of the electron.

Impact Energy with Iris

Bremsstrahlung

Electron Energy=25 MeV

[1] R.P Lambert, J.W. Jury and N.K. Sherman, Nuclear Instruments and Methods 214 (1983) 349-360

Experiment: 9-cell cavity RI23

γ energy spectrum measurement system

High Voltage

 \bigcirc Detector

3 Amplifier

4 Attenuation

⑤ DAQ

6 computer

① Dewar

Energy Spectrum from NaI(TI) Crystal

End Point Energy Fitting

Pi mode 12MV/m Ep=9.4MeV

End point Energy

π measurement			
Field Gradient MV/m	End point Energy MeV	Note	
10	4.5	Field emission starts at about 9 MV/m	
11	7.0		
12	9.1		
13	11.0		
14	13.0		
15	15.1	detector saturated	
16	17.9	detector saturated	

7/9 π mode measurement		
Field Gradient [end cell] MV/m	End point Energy MV/m	Note
14	2.3	Field emission starts at about 13.5MV/m
16.2	3.2	
18	3.9	
21	5.8	
22	6.8	
24	8.9	
26	12.1	detector saturated

1. π mode Field emission onset about 9 MV/m

2. $6/9 \pi$ mode Field emission onset 30MV/m (end cell)

4. $5/9 \pi$ mode Field emission onset 28MV/m (end cell)

5. $7/9 \pi$ mode Field emission onset 13.5 MV/m (end cell)

0 €

Radiation measurement

Field emission region is: Iris 9, -9.9mm~-12.2mm [S]

Correlation between Simulation and Measurements

Calculated impact energy of field emission electrons and measured end point energy in γ spectrum π mode

Identification

Field emission onset $1.\pi$ mode 9MV/m 2.6/9 π mode 30MV/m 3.1/9 π mode 5.7MV/m 4.5/9 π mode 28MV/m 5.7/9 π 13.5MV/m 6.Radiation at bottom is much higher than that at top

Correlation at another Pass-Band Mode

Calculated impact energy of field emission electrons and measured end point energy in γ spectrum 7/9 π mode

Radiation angular location measurement system

Hamamatsu S1223-01

Detector Signal Angular Distribution

Eacc=14.9 MV/m

Detector Signal Angular Distribution

Eacc=17.5 MV/m

Photon Simulation from emission electrons

Electrons escaping from the cavity

electron density distribution

Photon Distribution

Detector response

Detector response to photon

Preliminary Simulation Result

Detector Signal Angular Distribution

Eacc=17.5 MV/m

Simulation Analysis

- 1. Emitter is one point chosen in the Zigzag region. More simulation of the emitter location within Zigzag region will be done in the next step.
- 2. The beta of the field emitter is 150. This data will be fitted by the measured diode data with different gradient.
- 3. The diode simulation model is simple. The wafer dimension and the window or the package did not consider in the simulation. For the next step, these factors will be considered.
- 4. Space charge effect is not consider for the field emission electrons.

Plan for the next step

Optical Inspection

Resolution: 7.4um/pixel

No distinguished feather was observed within the limitation.

3.Summary

- Energy measurement in RI-23 9cell cavity are agreed very well with the simulation result.
- Angular location of field emitter are done by six diode rings.
- It has been demonstrated that field emitter can be located during vertical test; the method has potential to be generalized
- Work also extended to calculate CEBAF 12 GeV upgrade cavities

