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 Pit cavity experiment;
» Motivation and experiment setup;
» Experiment results and analysis;

» Key achievements:
Proves that pit with sharp edge will cause quench;

« Conclusions;
* A general rf heating simulation code for

SRF community.

Yi Xie, SRF2013, Paris 4
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Pits are identified as sources of quench mostly below
25MV/m. Some pits will cause cavity to quench but
some bigger pits don’t cause quench.

200 um ———————
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Quenched at 22 MV/m (Cornell) d~1mm pit, no quench (FNAL)

Open question: \Why some pits cause quench,
some are not”? What are the relevant parameters?

Yi Xie, SRF2013, Paris 5



A possible explanation: Magnetic field
enhancement (MFE) at pit edges

Yi Xie, SRF2013, Paris 6
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Due to magnetic field enhancements at the pits
edge, some of the smaller pits with sharp edges
may reach Nb superheating field earlier than

some bigger pits with shallow edges;

2R

r
Magnetic field enhancement factor: B (E) "(=1/3)

Valery Shemelin and Hasan Padamsee’s
initial idea and then | redid the pits
simulation using ACE3P

New calculation see TUP0O0S8
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Magnetic field enhancement factor calculation by ACE3P

using a 3-d model. The fit equationis 3 = 1.17 * (r/R)™"3.
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Magnetic field enhancement near the pit edge.
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To systematically study pits, we need statistics,
so | made a cavity with lots of artificial pits with
different sizes R.

Yi Xie, SRF2013, Paris 10
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* [T artificially created pits with five sizes on a single cell
Nb cavity, three of them on each half cup before welding,
all together 30 pits;

Radius: 200 um, 300 um, 400 pum, 600 um, 750 um,;
Depth: 1.5mm:;
* The cavity received 120um BCP and in-situ 120 C bake;

!
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* For every pit, I used Cornell single-cell T-map system to
record the temperature rise as a function of magnetic field;

* The cavity reached ~ 550 Oe (55 mT) on the
quenched pits surface;
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600

| L Some Q-drop effects’kicks in
~ 650 sensors, n2 sensitivity!

Huge Q-drop ,

Yi Xie, SRF2013, Paris
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Note the bigger pits shows bigger heating
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For two quenched pits, both show gradual heating until
sudden jump to ~ 1K range, which may indicates pits go
normal conducing;

Yi Xie, SRF2013, Paris 15



@ wewwe.Normal conducting region exists!

My ring-type defect model simulations show that there is a thermally
meta-stable state below quench field for pit-like defects. At this state,

only the edge of the pits will get normal conducting. <)
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' . . Radial distance[r(’;n) .
Radial distance from pit center

Normal conducting region, T = 5.76K > T =T, *sqrt(1-H/H)=5.4K,
Here H 1s slightly below quench field.

Yi Xie, SRF2013, Paris 16
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Optical inspection after test Laser confocal microscope of pit edge

For the quenched pits, R~750 um, r ~ 10 um, using MFE
formula we can get MFE factor ~ 4. Which 1s 1n good
agreement with pits cavity quench field 55 mT (assuming
Nb superheating field ~ 200 mT)!

Yi Xie, SRF2013, Paris 17
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Laser confocal microscopy was used to obtain the precise
Values of pit edge radius .

i
Replica of cavity pits Pit sample area

Since magnetic field is parallel to cavity
equator, so edges of pits perpendicular

to the direction of the magnetic field show
highest fields due to MFE effect. So we only
sample area indicated above.

. Niobium

Yi Xie, SRF2013, Paris 18
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Range of pit edge radius r of three pits with the
biggest drill bit radius R =750 ym

Yi Xie, SRF2013, Paris 19
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Pit num- | Pit drill ra- || Range of pit edge | Range of pit radius
ber dius (um) radius 7 (um) R (um)
#30 750 5~30 850~900
#27 750 20~55 880~900
#28 750 15~45 820~850
#23 600 30~60 520~550
#24 600 25~60 580~610
#22 600 5~45 570~610
#19 600 20~55 550~600
#20 600 35~60 570~600
#7 300 20~50 280~310
#6 200 25~55 180~210
#2 200 35~60 190~200

Yi Xie, SRF2013, Paris 20
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How does magnetic enhancement model apply to
those pits geometrical information

Yi Xie, SRF2013, Paris 21



Pit Pit drill | Range of | Range of | Range of | Range of lo-

num- | radius | pit edge | pit radius | magnetic cal magnetic

ber (um) radius 7 | R (um) field en- | fields at H,

(pm) hancement reached in

factor = | the pit cavity
1.17=(r/R)7/?

#30 750 5~30 850~900 3.6~6.6 |

#27 750 20~55 800~850 2.9~4.1

#28 750 15~45 790~810 3.0~4.4

#23 600 30~60 520~550 2.4~3.1 1290~1670

#24 600 25~60 580~610 2.5~3.4 1350~1830

#22 600 5~45 570~610 2.7~5.8 @

#19 600 20~55 550~600 2.5~3.6 1350

#20 600 35~60 570~600 2.5~3.0 1350~1620

#7 300 20~50 280~310 2.1~29 1130~1560

#6 200 25~55 180~210 1.7~2.4 910~1290

#2 200 35~60 190~200 1.7~2.1 910~1130

Yi Xie, SRF2013, Paris
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MFE theory suggests that the edge of
pit #30, #28, #22 will go to
normal conducting first,

Is it that true?

Yi Xie, SRF2013, Paris 23
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Heating vs magnetic field level for pit #28

Yi Xie, SRF2013, Paris 25
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Heating vs magnetic field level for pit #22

Yi Xie, SRF2013, Paris 26



MFE theory suggests that the edge of

pit #27 will go normal conducting at higher
flelds compared with pit #30, #28,

Is it that true?

Yi Xie, SRF2013, Paris 27
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Heating vs magnetic field level for pit #27

Yi Xie, SRF2013, Paris 28
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Different size pits heating
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For different size pits, it appears heating generally increases
along with pit diameter R which is also consistent with MFE
model since our bigger pits have bigger MFE factor.

Yi Xie, SRF2013, Paris 30
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Non-quench pits
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Non-quench pits

Pit Slope of /n(AT/K) | Slope of In(AT/K) | Slope of n(AT/K)

number | vs n(H,/Oe) in | vs n(H,/Oe) in |vs I[n(H,/Oe) in
field region I (Hy,.; | field region II (800 | field region III
< 800 Oe) Oe < Hipear < 1300 | (Hioear > 1300 Oe)

Oe)

#27 ~ 2 6.2 4.3

#28 ~ 2 10.0 5.0

#23 ~ 2 8.3 42

#24 ~ 2 8.4 4.8

#19 ~ 2 7.8 4.1

#20 ~ 2 8.1 4.6

#7 ~2 8.5 4.0

#6 1.92 N/A N/A

#2 1.97 vi xie, W43, paris N/A

35
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Low field: H*2 heating;

Higher field: with the magnetic field to a power of 4
to 6 at medium fields, and with a power of ~ 2 of the
high fields above 1300 Oe;

The transition to field dependent surface resistance
happens at fields similar to where the high field Q-
slope starts in BCP cavities ( ~ 900 Oe);

The pit heating data shows that a BCP cavity surface
can reach high fields close to the superheating field.

Yi Xie, SRF2013, Paris 36
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* Pit cavity experiments and simulations verify that
MFE enhancement will cause pit edge nc first. Then
the nc will spread and cause the whole cavity
qguench. Pit cavity is able to separate thermal effects
from g-slope information.

* Pit cavity is a powerful tool to explore basic SRF
niobium materials properties.

 Repeat what | did, just EP the cavity, see what the
slope looks like.

Yi Xie, SRF2013, Paris 37
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Advertisement for a general rf heating
simulation code

Yi Xie, SRF2013, Paris 39
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B main_thermalfeedback

Yi Xie, SRF2013, Paris
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Disk defect temperature distribution
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Four running modes;

» Simple defect free 1-D;
» Defect case with disk-type and ring-type;
» Multilayer cases: niobium on copper, Gurevich’s coating;

User can define niobium/helium properties

(modular);

» Basic: RRR, RO,f, PMFP => Rbcs, Kappa, Kapitza

» Advanced: user can write their own Rbcs/Rres,
Kappa and Kapitza resistance formula;

User can define mesh configurations;
» Flexible control mesh density near defects or the different
layers;

Yi Xie, SRF2013, Paris 42
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NPT

* Fermilab crab cavity version: wall thickness;

* Fermilab 650 MHz: RRR selection;

» Will nitrate coating affect niobium outside
surface thermal properties?

« Material and thickness choices for
niobium-copper and multilayer-coating;

* More important: defect and quench modeling;

You can download the whole code (include sources):
https://www.dropbox.com/sh/3qtzz4tpvq458hr/cNqY 7UrLTc



