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Outline 

• New experimental findings on Q slopes 
– Decomposition of the components of surface resistance (RBCS and Rres) 

• Shows which Q slope is due to what component 
• New superconducting measurements 

– Low energy muon spin rotation 
• Baked/unbaked cutouts 
• N doped  

• New proximity effect model of the high field Q slope 
– Evidence from cryogenic TEM investigations in cutouts 

• New model of the 120C baking 
– Vacancy-based 120C baking mechanism and supporting evidence from 

cutouts 
– Suppression of the second phase of hydrides in direct observations 

• Conclusions 
 



Decomposition of Rs into 
components 

• Using different temperature dependence to 
deconvolute the components of average 
surface resistance at ALL fields  
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Rs(T) = RBCS(T) + Rres 

Due to thermally excited 
quasiparticles  

Non-T-dependent, 
saturation value at 
T -> 0 



Rs(B) decomposition 
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Can be fitted using both approximate 
formula RBCS(T)=A/T exp(-⊗/kT), and by 
more precise BCS calculation based on  
Halbritter’s program – virtually no difference 
in the results 

Fit a set of Rs(T) 
curves to extract 
Rres at each Eacc 

A. Romanenko and A. Grassellino, Appl. Phys. Lett.  102, 252603 (2013) 



Residual resistance 
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High field Q 
slope is 
clearly a 
residual 
resistance 
effect  

Contributes to the 
medium field Q 
slope 

For some treatments 
decreases at lower 
fields  

A. Romanenko and A. Grassellino, Appl. Phys. Lett.  102, 252603 (2013) 



BCS resistance 
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Typically 
cited effect 
of 120C 
baking on 
the BCS 
surface 
resistance 

A strong change 
in the field 
dependence due 
to 120C bake 

Unbaked 

Baked at 120C 

More on the medium 
field Q slope – hot topic 
session on Thursday  

A. Romanenko and A. Grassellino, Appl. Phys. Lett.  102, 252603 (2013) 



SC gap change with field 
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Field dependence 
of RBCS may be 
explained by the 
expected changes 
of pairing potential 
Δ=Δ (H) in clean 
(unbaked) and dirty 
(120C baked) limits 

mfp << ξ 

mfp >> ξ 



Role of thermal “feedback” 
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Negligible effect on 
RBCS at T <= 2K   

Instead of modeling 
the full temperature 
transfer with only 
Rs=G/Q0 as an input 
use temperature 
mapping to measure 
the outside wall 
temperature 

More – hot topic 
session on 
Thursday  



Correlation between medium and high 
field Q slopes in unbaked cavities 
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More info – please see [A. Romanenko et al, TUP101] 

T-map data shows that local 
surface resistance in HFQS 
regime is highly correlated to Rs 
at lower fields (MFQS) 



New cavity data allows to “filter” 
models 

• High field Q slope is due to residual 
– Not SC gap closing, thermal feedback etc. 

• Medium field Q slope is a combination of RBCS 
and Rres 
– Not due to the difference in Trf and Tbath 
– Correlation between high and medium fields in 

unbaked cavities 
• Low field Q slope is likely due to residual 
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New superconducting 
measurements 

• Bulk muon spectroscopy 
– A. Grassellino et al, TUP031 

• Low energy muon spectroscopy 
– A. Romanenko et al, TUP038 

• Bitter decoration 
– F. Barkov et al, TUP016 
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Muon spin rotation 
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Frequency – field amplitude 
Damping – field non-uniformity 



Muon spin rotation – measure B(z) 
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LEM – data on EP baked/unbaked 
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Use variable energy muons, which 
stop in the first ~100nm  

Fit by Gaussian model for the field at the muon site – 
approximate, qualitative comparison 

BCP and EP unbaked -> strong 
screening, excellent fit provided by the 
clean limit Pippard/BCS model  
 
EP+120C bake-> strongly suppressed 
m.f.p., gradient of the m.f.p. from the 
surface, dirty limit 
 
N-doped -> intermediate m.f.p., no 
gradient 

mfp ~ 2 nm at the surface, 
increasing deeper 

~15 nm - no 
screening 

mfp~40 
nm mfp > 

400 nm 



New model of the HFQS 

• Main element: presence of small proximity 
effect coupled nanohydrides within the 
penetration depth 
– Q disease “in miniature” 

• Consistent with all experiments, provides 
quantitative description 

• Falsifiable 
– Testable predictions 
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A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003 



Neither standard 800C degassing 
nor “fast” cooldown help 
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Integrate the H diffusion over the time 
spent in the precipitation temperature 
range T < 160K => L > 1 um 
 

All free near-surface H will 
precipitate into hydrides  

Typical fast cooldown of a cavity (FNAL) 

C. Antoine et al, SRF’01 

T. Tajima et al, SRF’03 

Near-surface H-rich layer is still there 
after standard H degassing treatments 



Nanohydrides upon cooldown 

Not 120C baked sample 

“fast” 
cooldown 

T= 300K  

Interstitial hydrogen 

~50 nm 

Oxide 

T= 2K  

Niobium hydrides 

Oxide 

Note drastic change in the hydrogen-related m.f.p. 



Proximity effect model 
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FH Cumulative distribution function of proximity-
controlled breakdown fields of hydrides 

Shape is 
determined 
by the 
distribution of 
hydride 
critical fields 
Hb 

Rs~ R0 + Rn * FH(Ha) 

• Normal conducting 
hydrides of size d are 
superconducting by 
proximity effect up to 
the field Hb ~ 1/d 

Q disease High field Q slope 

• Excellent 
fits 

H 

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003 



• So what happens with 120C bake? 
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A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)  

Positron annihilation on cavity cutouts 

BCP EP Large grain 

Fine grain 

• Positron annihilation spectroscopy: 120C baking results in “doping” of the 
first ~50 nm from the surface with defects, most likely vacancies 
– EP itself introduces some vacancies in ~1 um – may be the reason for more 

efficient 120C baking in EP cavities 
 
 



Effect of 120C baking 
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T= 300K  

Free interstitial hydrogen 

~50 nm 

Oxide 

120C 
baking 

T= 300K  

Hydrogen is trapped by 
vacancies 

Oxide 

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)  



Effect of 120C baking 
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“fast” 
cooldown 

Cooling down of 120C baked niobium 

T= 2K  

No/smaller hydrides are formed 
due to significant portion of 
hydrogen trapped  

Oxide 

T= 300K  

Oxide 

Note no change in the hydrogen-related m.f.p. – remains low 



TEM evidence for nanohydrides 
• Direct imaging of the cross-sections of cavity cutouts in cryo-TEM [see Y. Trenikhina 

et al, TUP043] 
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Look at this area with 
subnanometer 
resolution in TEM at 
room AND T<100K 
temperatures 

See also R. Tao et al, J. Appl. Phys. 114, 044306 (2013) and TUP042 for cryoimaging of H-reach Nb samples 

TEM 



Direct evidence for nanohydrides 
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Y. Trenikhina et al, TUP043 



Direct observation of large 
hydrides 

t=0 

F. Barkov et al, TUP014 

1 min 2 min 5 min 

15 min 45 min 100 min 3 hr 

Growing of hydrides at T=160K in a mechanically polished sample 



Further evidence: 100K and 120C 
baking effect 

• Second phase (lower concentration, lower 
temperature) forms at 100K 
– NOT observed on 120C baked samples  
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T=110K T=100K 



Summary 

• Both residual and BCS surface resistances carry a field 
dependence 
– Analysis of Q slopes should only be done on components 

• Mean free path/ Meissner screening is lowest, depth-
dependent in 120C baked material, highest in unbaked, N-
doping leads to the “intermediate” situation 

• Nanohydrides may be an omnipresent entity not appreciated 
before 
– May be THE cause of the high field Q slope 

• Proximity-induced superconductivity breaks down at lower fields than 
host (Nb) 

– May be related to the residual resistance field dependence  
• Dominant source of the medium field Q slope in unbaked cavities  

– Absence of nanohydrides may be behind the effect of doping  
– Plausible mechanism of 120C baking -> trapping of hydrogen by 

vacancies -> preventing/decreasing size of nanohydrides 
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