

Q-Slope Studies at Fermilab: New Insight From Cavity and Cutouts Investigations

A. Romanenko Fermilab

Outline

- New experimental findings on Q slopes
 - Decomposition of the components of surface resistance (R_{BCS} and R_{res})
 - Shows which Q slope is due to what component
- New superconducting measurements
 - Low energy muon spin rotation
 - Baked/unbaked cutouts
 - N doped
- New proximity effect model of the high field Q slope
 - Evidence from cryogenic TEM investigations in cutouts
- New model of the 120C baking
 - Vacancy-based 120C baking mechanism and supporting evidence from cutouts
 - Suppression of the second phase of hydrides in direct observations
- Conclusions

Decomposition of Rs into components

 Using different temperature dependence to deconvolute the components of average surface resistance at <u>ALL</u> fields

$$R_s(T) = R_{BCS}(T) + R_{res}$$

Due to thermally excited a value at quasiparticles $R_{res}(T) + R_{res}(T) + R_{res}(T)$

Fit a set of $R_s(T)$ curves to extract R_{res} at each E_{acc} 16 (myOn) s 10 14 12 -**- 29** 8 6 1.9 2.0 1.5 1.6 1.7 1.8 Temperature (K)

Measure $Q(E_{acc},T)$ at many different T<2.17K and E_{acc}

Can be fitted using both approximate formula $R_{BCS}(T)=A/T \exp(-\otimes/kT)$, and by more precise BCS calculation based on Halbritter's program – virtually no difference in the results

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

High field Q slope is clearly a residual resistance effect

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

SC gap change with field

Instead of modeling the full temperature transfer with only R_s = G/Q_0 as an input use temperature mapping to measure the outside wall temperature

Negligible effect on R_{BCS} at T <= 2K

More – hot topic session on Thursday

Correlation between medium and high field Q slopes in unbaked cavities

T-map data shows that local surface resistance in HFQS regime is highly correlated to Rs at lower fields (MFQS)

More info – please see [A. Romanenko et al, TUP101]

- High field Q slope is due to residual
 - Not SC gap closing, thermal feedback etc.
- Medium field Q slope is a combination of R_{BCS} and R_{res}
 - Not due to the difference in Trf and Tbath
 - Correlation between high and medium fields in unbaked cavities
- Low field Q slope is likely due to residual

New superconducting measurements

- Bulk muon spectroscopy
 - A. Grassellino et al, TUP031
- Low energy muon spectroscopy
 - A. Romanenko et al, TUP038
- Bitter decoration
 - F. Barkov et al, TUP016

Muon spin rotation

Muon spin rotation – measure B(z)

$$\omega_{\mu}(z) = \gamma_{\mu} B_{\rm loc}(z)$$

禁Fermilab

LEM – data on EP baked/unbaked

BCP and EP unbaked -> strong screening, excellent fit provided by the clean limit Pippard/BCS model

EP+120C bake-> strongly suppressed m.f.p., gradient of the m.f.p. from the surface, dirty limit

N-doped -> intermediate m.f.p., no gradient

Fit by Gaussian model for the field at the muon site – approximate, qualitative comparison

- Main element: presence of small proximity effect coupled nanohydrides within the penetration depth
 - Q disease "in miniature"
- Consistent with all experiments, provides quantitative description
- Falsifiable
 - Testable predictions

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003

Neither standard 800C degassing nor "fast" cooldown help

Near-surface H-rich layer is still there after standard H degassing treatments

Integrate the H diffusion over the time spent in the precipitation temperature range T < 160K => L > 1 um

All free near-surface H will precipitate into hydrides

[H] (Atomic 96)

Nanohydrides upon cooldown

Not 120C baked sample

T= 300K

Note drastic change in the hydrogen-related m.f.p.

 Normal conducting hydrides of size d are superconducting by proximity effect up to the field H_b ~ 1/d

Excellent fits

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003

So what happens with 120C bake?

Positron annihilation on cavity cutouts

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)

- Positron annihilation spectroscopy: 120C baking results in "doping" of the first ~50 nm from the surface with defects, most likely vacancies
 - EP itself introduces some vacancies in ~1 um may be the reason for more efficient 120C baking in EP cavities

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)

Cooling down of 120C baked niobium

T=300K T=2K

Note no change in the hydrogen-related m.f.p. – remains low

TEM evidence for nanohydrides

Direct imaging of the cross-sections of cavity cutouts in cryo-TEM [see Y. Trenikhina et al, TUP043]

See also R. Tao et al, J. Appl. Phys. 114, 044306 (2013) and TUP042 for cryoimaging of H-reach Nb samples

Direct evidence for nanohydrides

Y. Trenikhina et al, TUP043

NED at room T Hot and Cold spot: NO additional reflections, just Nb

Hot spot NED at 94K: low T phase(s) along with Nb

"Statistics" of the second phase appearance: 44%-68% of the probed spots

Direct observation of large hydrides

F. Barkov et al, TUP014

Growing of hydrides at T=160K in a mechanically polished sample

- Second phase (lower concentration, lower temperature) forms at 100K
 - NOT observed on 120C baked samples

Summary

- Both residual and BCS surface resistances carry a field dependence
 - Analysis of Q slopes should only be done on components
- Mean free path/ Meissner screening is lowest, depthdependent in 120C baked material, highest in unbaked, Ndoping leads to the "intermediate" situation
- Nanohydrides may be an omnipresent entity not appreciated before
 - May be THE cause of the high field Q slope
 - Proximity-induced superconductivity breaks down at lower fields than host (Nb)
 - May be related to the residual resistance field dependence
 - Dominant source of the medium field Q slope in unbaked cavities
 - Absence of nanohydrides may be behind the effect of doping
 - Plausible mechanism of 120C baking -> trapping of hydrogen by vacancies -> preventing/decreasing size of nanohydrides

- FNAL: F. Barkov, A. Grassellino, A. Crawford, D. Sergatskov, O. Melnychuk, R. Pilipenko
- IIT/FNAL: Y. Trenikhina
- IIT: J. Zasadsinski
- Univ. of Chicago: S. Antipov
- Cornell Univ.: H. Padamsee

