

FLUORINE FREE IONIC LIQUID

ELECTROPOLISHING OF NIOBIUM

CAVITIES

V. Pastushenko

O. Malkova, G. Yu, A. Rossi, F. Stivanello, V. Palmieri

Outline

- ➤ Standard surface polishing
- ➤ Mechanical polishing of 6 GHz cavity
- ➤ New system for tumbling built in LNL
- **≻**Electropolishing
- ➤ Ionic Liquids Green Chemistry
- >Study the parameters of Electropolishing in Ionic Liquids
- > Recent results

Aim:

To find the optimum condition for electropolishing

of niobium in <u>fluorine-free</u> electrolyte

Standard surface polishing techniques

Blue indicator - direct flow, red - indirect.

1 – cavity kit; 2 – anode contacts; 3 – cathode contact; 4 – outgoing valve; 5 – flux regulating valve 6 – stand. V. Pastushenko LNL-INFN, 16th International Conference on RF Superconductivity, SRF 2013

Mechanical surface treatment techniques

for

6 GHz cavity

Mechanical polishing approaches

(LNL-INFN)

TURBULA® Shaker-Mixer

Centrifugal barrel polishing (CBP)

"Flower brush"

- We design a customized brush that can go to the center of the cavity.
- The whole "flower" is made in stainless steel, the abrasive material is fixed to the leaves.

Vibrating system - a new mechanical polishing approach

Inner surface of 6 GHz cavity before and after tumbling

Electropolishing

Standard electropolishing of niobium cavities

HF: H₂SO₄ (ratio 1:9)

IONIC LIQUID as an Alternative

Green Chemistry

V. Pastushenko LNL-INFN, 16th International Conference on RF Superconductivity, SRF 2013

Study the parameter for Electropolishing in Ionic liquids

Ionic liquids based on Choline Chloride

Ratio	Components	Note
1:1	Ch Chl : Sulfamic Acid	Not create IL
1:1	Ch Chl : Ammonium persulfate	Not create IL
1:1	Ch Chl : Malic Acid	no polishing
1:2	Ch Chl : Ethylene glycol	pitting -

Influence of the additives on the surface state

❖ Solutions are based on electrolyte: Choline Chloride and Urea (1:4) + additive

Dependence of roughness from quantity of additives

Dependence of roughness from material of the cathode

The Best parameters for EP Nb samples

Choline Chloride : Urea	1:4
Sulfamic acid, g/l	97
Material cathode	Nb
Temperature,°C	Higher then 120
Current density, A/cm ²	0,3

Development of system for Electropolishing in Ionic Liquids

Vertical vs. Horizontal Electropolishing

Vertical EP: holed cathode

Vertical EP: Two part cathode

Vertical Electropolishing

Creating a lot of bubbles during the electropolishing has damaged the surface!

Horizontal Electropolishing

Cavity, half immersed in the solution

Cavity with pumping the solution inside

Cavity half immersed in the solution and rotating

Half cavity before and after treatment

V. Pastushenko LNL-INFN, 16th International Conference on RF Superconductivity, SRF 2013

New system for electropolishing 6GHz cavity

Testing the new system

Modified system

Result

Conclusions

✓ We found the competitive solution for the EP, based on compounds commonly used in agriculture

✓ We have polished three cavities and measured one

✓ We don't have enough statistic for now, so we continue to work...

