

Design of the 352MHz, beta 0.50, Double-Spoke Cavity for ESS

Patricia DUCHESNE, Guillaume OLRY

Sylvain BRAULT, Sébastien BOUSSON, Patxi DUTHIL, Denis REYNET

Institut de Physique Nucléaire d'Orsay

□ CONTEXT
☐ RF DESIGN OF THE RESONATOR
☐ MECHANICAL DESIGN OF THE RESONATOR
☐ INTEGRATION IN THE CRYOMODULE
☐ STATUS OF THE PROTOTYPES

□ CONTEXT
☐ RF DESIGN OF THE RESONATOR
☐ MECHANICAL DESIGN OF THE RESONATOR
☐ INTEGRATION IN THE CRYOMODULE

ESS SPOKE SECTION

☐ ESS Superconducting Spoke section:

- ➤ 28 Double Spoke cavities (3 accelerating gaps)
- ➤ beta=0.50
- > frequency: 352.2 MHz
- > grouped by pair in 14 cryomodules
- > operating temperature: 2K
- Accelerating gradient: Eacc = 8 MV/m
- ➤ Peak field specifications: Epk < 35 MV/m, Bpk < 70 mT

Power c

E. Ramp

THP0

☐ Design

☐ Fabrication of prototypes

☐ tests of prototypes:

- Vertical tests of cavities
- Power couplers conditioning (Test bench @CEA/Saclay)
- Tests of CTS
- Low power tests of cryomodule (High power tests at UPPSALA)

Gandolfo THP078

Cold Tuning System

□ CONTEXT
☐ RF DESIGN OF THE RESONATOR
☐ MECHANICAL DESIGN OF THE RESONATOR
☐ INTEGRATION IN THE CRYOMODULE

SPECIFICATIONS FOR THE DOUBLE SPOKE CAVITY

Parameters established by the beam dynamics simulations:

DOUBLE-SPOKE CAVITY	,
Beam mode	Pulsed (4% duty cycle)
Frequency [MHz]	352.2
Beta_optimal	0.50
Temperature (K)	2
Bpk [mT]	70 (max)
Epk [MV/m]	35 (max)
Gradient Eacc [MV/m]	8
Lacc (=beta optimal x nb of gaps x λ /2) [m]	0.639
Bpk/Eacc [mT/(MV/m)]	< 8.75
Epk/Eacc	< 4.38
Beam tube diameter [mm]	50 (min)
RF peak power [kW]	300 (max)

OPTIMIZATION OF THE GEOMETRY

☐ Main goal: fulfil the criteria of the peak surface field to accelerating gradient ratios

$$\frac{E_{pk}}{E_{acc}} < 4.38 \qquad \qquad \frac{B_{pk}}{E_{acc}} < 8.75 \text{ [mT/MV/m]}$$

☐ The optimization method of the RF design:

- Parameterization of the geometry
- Sensitivity analysis on the ratios Epk/Eacc & Bpk/Eacc
- CST MicroWave Studio (MWS)
- Results cross-checked with to mesh types: hexahedral and tetrahedral

☐ Geometry of the spoke bars:

Based on our feedback from two Single-Spoke resonators and a Triple-Spoke resonator fabrication (EURISOL)

→ Achievement of an acceptable solution

Conical shape

Racetrack shape

RF RESULTS

Last modifications (included in the prototypes)

Technical issues for manufacturing

Minor parameters changes

New ESS requirements

Mesh type	Hexahedral (2.2 millions meshcells)	Tetrahedral (600000 tetra.)
Beta optimal	0.50	0.50
Epk/Eacc	4.51	4.33
Bpk/Eacc [mT/MV/m]	6.99	6.89
G [Ohm]	131	130
r/Q [Ohm]	425	426

- Epk/Eacc > 4.38: compromise between the cavity length, end cap shape feasibility and tuning sensitivity.
- Lacc = 3 / 2 x beta optimal x lambda

□ Coupling calculations: Qext = $1.5 \cdot 10^5$ (with the parameters 50mA and 8MV/m)

Coupler port location (\emptyset =100mm):

Variation of the coupler port center from 100 to 170mm (\leftrightarrow distance to the origin)

Penetration of the antenna: Variation from +5

Qext = $1.5 \cdot 10^5$ for:

- \Rightarrow 5mm of tip penetration
- ⇒ coupler port location: 120mm

MWS model of the cavity with antenna - G. Olry

CONTEXT
RF DESIGN OF THE RESONATOR
MECHANICAL DESIGN OF THE RESONATOR
INTEGRATION IN THE CRYOMODULE

MECHANICAL STUDIES

- ☐ Criteria taken into account
 - Cavity preparation: High Pressure Rinsing (HPR)
 - → easy and efficient
 - Life cycle of the cavity: Leak tests & cryomodule tests
 - → No risk of damage (plastic deformation at room T°)
 - Manufacturing constraints: Metal forming & Assembly process
 - → Feasible (at a reasonable cost)
- ☐ Integration of the Helium vessel
- Connections with the beam tubes: Flange / bellows (For the tuning)
- Helium vessel: Titanium grade 2
 - > Ease of assembly with niobium
 - ➤ No problem of thermal stresses
 - May act as a reinforcement of the cavity
- Standard dished end cups

Pick-up ports

Vessel walls thickness = 4mm

⇒ Result of the iterative numerical simulations

ESS Double Spoke Cavity - S. Brault

cavity walls thickness = 4mm

Welded flange

HPR ports (x4)

donut rib (x2)

Ring rib

Helium vessel

Coupler port

MECHANICAL BEHAVIOUR

■ Mechanical simulations

Different load cases studied according to the life cycle of the cavity

Static and modal analysis

(ANSYS Mechanical V14)

- Leak tests during fabrication
- Pressure test (Cool down at 4K)
- Mechanical vibration modes
- → Check no plastic strains
- → Define maximum pressure during cool down
- → Check sensitivity to microphonics

Mechanical model: cavity with its helium vessel

RF-Mechanical coupled analysis

(ANSYS APDL & EMAG V14)

- RF sensitivity by pulling on beam tubes
- RF sensitivity due to the He bath pressure fluctuation
- RF sensitivity due to the Lorentz forces
- → Define sensitivity for the cold tuning system
- → Define a range for the pressure and Lorentz detuning factors

STATIC AND MODAL RESULTS

☐ Static results

Leak test on the bare cavity:

- \Rightarrow σ_{max} < 50 MPa (Yield stress of Niobium at room T°)
- ⇒ The donut ribs are necessary

Pressure test with $\Delta P = +0.1$ MPa:

 \Longrightarrow Max pressure (Cool down) estimated to be 1.47 bar at σ_{max} = 50 Mpa

☐ Mechanical modes

N°	Frequency	Mode
1 & 2	212Hz	Beam tube on CTS side
3 & 4	265Hz & 275Hz	Spoke bar/Helium vessel
5 & 6	285Hz	Coupled mode Cavity/Helium vessel
7	313Hz	Helium vessel
8 to 11	315Hz to 365Hz	Coupled mode Cavity/Helium vessel
12	396Hz	beam tubes

⇒ First critical mode (mode 3) >> 50 Hz

Mode 1: 212 Hz

Mode 3: 265 Hz

RESULTS ON THE RF SENSITIVITY

☐ Sensitivity to Helium bath pressure fluctuation

K _P without CTS (free ends)	+16.5 Hz/mbar
K _P with greatly stiff CTS*	+26.0 Hz/mbar

*The beam tube is connected rigidly to the helium vessel at the level of the 4 CTS supports (along the beam axis)

K_P as a function of the CTS stiffness:

$$K_{p} = K_{p}^{\infty} - \frac{\partial f}{\partial z} \frac{\vec{F}^{\infty} \cdot \vec{u}_{z}}{(K_{cav} + K_{CST})\Delta P}$$

☐ Sensitivity to Lorentz forces detuning

		For 8MV/m
K _L without CTS (free ends)	-5.13 Hz/(MV/m) ²	Δf = -328 Hz **
K _L with stiff CTS	-4.4 Hz/(MV/m) ²	∆f = -282 Hz

**bandwidth = 1530 Hz

 K_L as a function of the CTS stiffness:

$$K_{L} = K_{L}^{\infty} + \frac{\partial f}{\partial z} \frac{\vec{F}^{\infty}.\vec{u}_{z}}{(K_{cav} + K_{SAF})E_{acc}^{2}}$$

☐ RF sensitivity for cavity tuning

Stiffness of the cavity	20 kN/mm
Tuning sensitivity ∆f/∆z	135 kHz/mm

 \Rightarrow At 2K: the tuning range is +173 kHz (1.28mm of max displacement not to exceed 400 MPa)

View of the Cold Tuning System - N. Gandolfo

DETAILED MECHANICAL STUDIES

☐ Last modifications (included in the prototypes)

Adding of some new stiffeners on the Spoke bars:

Pressure test with $\Delta P = 0.1$ Mpa:

⇒ Maximum pressure (Cool down) estimated to 2.77 bars

Replacement of the donut rib by a titanium disk:

Leak test on the bare cavity:

⇒ Manufacturing and assembly easier

□ CONTEXT	
☐ RF DESIGN OF THE RESONATOR	
☐ MECHANICAL DESIGN OF THE RESONATOR	
☐ INTEGRATION IN THE CRYOMODULE	

CAVITY ASSEMBLY INTO THE CLEAN ROOM

- ☐ High Pressure Rinsing HPR (100bars) in clean room ISO 4
- ☐ Assembly of the cavities with:
 - power coupler
 - > cold-warm transitions, dished ends and bellows
 - > warm Ultra High Vacuum gate valves

ASSEMBLY OUTSIDE THE CLEAN ROOM

■ Assembly outside the clean room

- ➤ Magnetic shield
- > Cryogenic distribution
- > Thermal shield and supporting rods
- Cold tuning system ...

☐ Tooling for cryostating

D. Reynet MOP089

ESS Spoke Cryomodule – D. Reynet, S. Brault, P. Duthil

Details in: "Design of the ESS Spoke cryomodule", SRF 2013, these proceedings.

SUPPORTING SYSTEM

☐ Principle of supporting system

Several considerations:

- 2 cavities: length = 2.86m, weight <500 Kg (with the
- Static heat load
- Assembly and alignment methods
- > Antagonist tie rods in some vertical planes
 - → Vertical and lateral positions

4 identical tie rods by vertical plane

> Tie rods and invar rods in a horizontal plane

→ Position along beam axis

ESS Spoke Cryomodule – **D. Reynet, S. Brault, P. Duthil**Details in: "Design of the ESS Spoke cryomodule", SRF 2013, these proceedings.

☐ STATUS OF THE PROTOTYPES
☐ INTEGRATION IN THE CRYOMODULE
☐ MECHANICAL DESIGN OF THE RESONATOR
☐ RF DESIGN OF THE RESONATOR
□ CONTEXT

FABRICATION OF PROTOTYPES

☐ Cavity: 3 prototypes

- 1 by SDMS (France)
- 2 by ZANON (Italy)
- > Start of contract: March 2013
- ➤ Ongoing discussions about the manufacturing of:
 - the Spoke bars in several pieces
 - the end cups of the cavity
- ➤ Delivery: April 2014

☐ Power coupler: 4 prototypes

- 2 by SCT (France)
- 2 by PMB (France)
- > Start of manufacturing: September 2013
- ➤ Delivery: November 2013

☐ Cold Tuning System: 2 prototypes

ESIM (France): mechanical components
NOLIAC (Denmark) &
PHYSIK INSTRUMENTE (Germany): Piezo actuators

➤ Delivery: done

N. Gandolfo THP078

Prototype mounted on the triple Spoke cavity (Eucard) at IPNO

THANK YOU FOR YOUR ATTENTION