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4     +      2     +    13      parameters

It works damnably well up to the TeV scale... 

New physics at larger scales can be encoded in 
higher-dimensional operators:

New physics below 100 GeV should be very weakly 
coupled to the SM: typically gauge singlet states ...
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Where should we search?
Definitely, the most motivated new physics signals are expected in 
the Electroweak Symmetry Breaking Sector... alas, no luck so far

Still room for natural EWSB, especially one should watch 
for the top sector observables
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‣ a new energy scale, mν ∼ 0.1eV, 
probably associated to another 
one, Λ = v2/mν ∼ 1014GeV

‣ the breaking of fundamental 
symmetries, lepton flavour 
numbers, and probably lepton 
number too

‣ 9 basic parameters, that add to 
the 19 SM parameters to define 
the ν-SM

The scale of flavour symmetry 
breaking remains unknown, 

and possibly out of reach 

The smallness of Λ is protected by a 
symmetry (lepton number): hopefully 
D=6 operators are less suppressed !
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SINDRUM II, PLB 317 (1993) 631
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Extra lepto-philic light states

• Light neutral particles may have escaped detection if sufficiently weakly 
coupled to the SM

• Spin 1: U(1)B-L may be weakly gauged and spontaneously broken at low 
energies (sub-MeV scale, Nelson-Walsh ‘07)

• Spin 1/2: they are generically sterile neutrinos, that may be useful to 
explain oscillations anomalies (eV scale, Kopp-Machado-Maltoni-Schwetz ‘13), 
or the dark matter relic density (keV scale, Shaposhnikov ‘07), ...

• Spin 0: if the lepton number (the lepton flavour group) is broken 
spontaneously, there must be a light Goldstone boson, the Majoron 
(several flavoured Goldstone bosons): good dark matter candidates!

• Cosmology may give indications for extra light degrees of freedom. 
Unfortunately there is no compelling evidence at present. E.g. Planck 
data require Neff = 3.3 ± 0.5 (95% C.L.)
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves are for Normal (Inverted) Ordering.
Results for di↵erent assumptions concerning the analysis of data from reactor experiments are
shown: for solid curves the normalization of reactor fluxes is left free and data from short-baseline
(less than 100 m) reactor experiments are included. For dashed curves short-baseline data are not
included but reactor fluxes as predicted in [42] are assumed. Note that as atmospheric mass-squared
splitting we use �m2
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• Precision in oscillation experiments means essentially:

‣ to close in on  0.34 < sin2 θ23 < 0.67 (3σ)

‣ to tell the mass ordering, normal or inverted

‣ to narrow the window 0 ≤ δ < 2π 

• The lighest neutrino mass lies in the range:                            
0 < mlight < 0.5 eV (conservative 95% C.L. from cosmological 
data); direct measurement with KATRIN ?

• Only one realistic observable is sensitive to the two Majorana-
type CP-violating phases: the neutrinoless 2β-decay effective 
mass, 0 < mee < 0.38 eV (90% C.L. by EXO-200, KamLAND-Zen 
pushed down to 0.25 eV;  similar bound from a different isotope by GERDA)
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A theory for lepton flavour ?

Few years ago, after a seminar on flavour models ...

A well-known physicist in the audience commented: “After many 
decades spent to measure precisely quark masses and the 
CKM mixing parameters, we did not learn anything on the 
underlying origin of flavour.”        

The well-known speaker replied:  “It is just you who did not 
learn anything!”
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From the neutrino mass matrix 
to the observables

4 precisely known parameters:

4 poorly constrained observables: 

For any given flavour model, Mν depends on n parameters

When n ≤ 4:

When n = 5:

When n = 6:                                                    and so on ...

One can derive these functions analytically, avoiding scans and/or approxs

No matter how complicated the model, its predictivity depends on n only

Frigerio &      
Villanova del Moral,

2013
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Figure 1: The correlations between sin2 ✓
23

, �, m
3

(in eV) and mee (in eV)
for the neutrino mass matrix in Eq. (3), in the case of inverted ordering of
the mass spectrum. The thick purple lines correspond to the best fit value of
the parameters pa’s in Eq. (1), while the purple shaded regions correspond
to the 3� allowed range for the pa’s. The yellow bands are excluded by oscil-
lation experiments. The green (blue) bands are excluded by the cosmological
upper bound on

P
mi (by the EXO-200 upper bound on mee). These three

exclusion bands are taken into account in all the six panels: the excluded
portions of the best fit lines are dashed and the excluded portions of the 3�
regions are not shaded.

5

In
ve

rt
ed

 O
rd

er
in

g 
  (

N
or

m
al

 is
 d

is
fa

vo
ur

ed
)

A five-parameter mass matrix



Purple lines: best fit values 
of the input parameters 

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
3

0 p
4

p
2

3 p
4

p

0.02

0.05

0.10

0.20

0.50

d

m
ee

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0

p
4

p
2

3 p
4

p

s23
2

d

0.02 0.05 0.10 0.20 0.50
0

p
4

p
2

3 p
4

p

m 3

d
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
ee

0.02 0.05 0.10 0.20 0.50

0.02

0.05

0.10

0.20

0.50

m 3

m
ee

Figure 1: The correlations between sin2 ✓
23

, �, m
3

(in eV) and mee (in eV)
for the neutrino mass matrix in Eq. (3), in the case of inverted ordering of
the mass spectrum. The thick purple lines correspond to the best fit value of
the parameters pa’s in Eq. (1), while the purple shaded regions correspond
to the 3� allowed range for the pa’s. The yellow bands are excluded by oscil-
lation experiments. The green (blue) bands are excluded by the cosmological
upper bound on

P
mi (by the EXO-200 upper bound on mee). These three

exclusion bands are taken into account in all the six panels: the excluded
portions of the best fit lines are dashed and the excluded portions of the 3�
regions are not shaded.

5

In
ve

rt
ed

 O
rd

er
in

g 
  (

N
or

m
al

 is
 d

is
fa

vo
ur

ed
)

A five-parameter mass matrix



Purple lines: best fit values 
of the input parameters 

Purple regions: 3σ ranges 
of the input parameters

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
3

0 p
4

p
2

3 p
4

p

0.02

0.05

0.10

0.20

0.50

d

m
ee

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0

p
4

p
2

3 p
4

p

s23
2

d

0.02 0.05 0.10 0.20 0.50
0

p
4

p
2

3 p
4

p

m 3

d
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
ee

0.02 0.05 0.10 0.20 0.50

0.02

0.05

0.10

0.20

0.50

m 3

m
ee

Figure 1: The correlations between sin2 ✓
23

, �, m
3

(in eV) and mee (in eV)
for the neutrino mass matrix in Eq. (3), in the case of inverted ordering of
the mass spectrum. The thick purple lines correspond to the best fit value of
the parameters pa’s in Eq. (1), while the purple shaded regions correspond
to the 3� allowed range for the pa’s. The yellow bands are excluded by oscil-
lation experiments. The green (blue) bands are excluded by the cosmological
upper bound on

P
mi (by the EXO-200 upper bound on mee). These three

exclusion bands are taken into account in all the six panels: the excluded
portions of the best fit lines are dashed and the excluded portions of the 3�
regions are not shaded.

5

In
ve

rt
ed

 O
rd

er
in

g 
  (

N
or

m
al

 is
 d

is
fa

vo
ur

ed
)

A five-parameter mass matrix



Purple lines: best fit values 
of the input parameters 

Purple regions: 3σ ranges 
of the input parameters

Shaded bands and dashed 
lines: excluded by bounds 
on the output parameters

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
3

0 p
4

p
2

3 p
4

p

0.02

0.05

0.10

0.20

0.50

d

m
ee

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
0

p
4

p
2

3 p
4

p

s23
2

d

0.02 0.05 0.10 0.20 0.50
0

p
4

p
2

3 p
4

p

m 3

d
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.01

0.02

0.05

0.10

0.20

0.50

s23
2

m
ee

0.02 0.05 0.10 0.20 0.50

0.02

0.05

0.10

0.20

0.50

m 3

m
ee

Figure 1: The correlations between sin2 ✓
23

, �, m
3

(in eV) and mee (in eV)
for the neutrino mass matrix in Eq. (3), in the case of inverted ordering of
the mass spectrum. The thick purple lines correspond to the best fit value of
the parameters pa’s in Eq. (1), while the purple shaded regions correspond
to the 3� allowed range for the pa’s. The yellow bands are excluded by oscil-
lation experiments. The green (blue) bands are excluded by the cosmological
upper bound on

P
mi (by the EXO-200 upper bound on mee). These three

exclusion bands are taken into account in all the six panels: the excluded
portions of the best fit lines are dashed and the excluded portions of the 3�
regions are not shaded.

5

In
ve

rt
ed

 O
rd

er
in

g 
  (

N
or

m
al

 is
 d

is
fa

vo
ur

ed
)

A five-parameter mass matrix



• Lepton physics & the electroweak scale

• Lepton flavour observables: present & future data 

• Lepton flavour symmetries: where do we stand

• Minimal flavour structures:  a conspiracy for non-
maximal 2-3 mixing

• A connection between neutrinos and very light dark 
matter candidates
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M⌫ =

0

@
a b c
b 0 b
c b 0

1

A

(e
V

)

1σ 1σ

Inverted Ordering

only 4 physical parameters:  |a|,  |b|,  |c|  and  arg[(ad)/(bc)] 

xi(pa)
8
>>>><

>>>>:

sin

2 ✓23 = 0.40+0.02
�0.01

cos � = 0.59+0.12
�0.14

mlight = m3 = 0.037+0.001
�0.002 eV

mee = 0.036+0.002
�0.001 eV

8
>>>><

>>>>:

sin

2 ✓23 = 0.62+0.03
�0.02

cos � = �0.75+0.15
�0.12

mlight = m3 = 0.0289+0.0002
�0.0001 eV

mee = 0.0284+0.0000
�0.0001 eV
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A bottom-up model

M⌫ =

0

@
a b c
b 0 b
c b 0

1

A Can one justify such a matrix structure by a 
(spontaneously broken) flavour symmetry ?

• Meμ = Mτμ implies that (Le,Lτ) transform in a doublet representation 2L , 
coupled to a doublet 2Φ of scalar fields (flavons) with〈Φ〉= b(1,1)

• Mee ≠ Mττ = 0 implies that 2L x 2L couples to a second flavon doublet 2Φ’ 
with 〈Φ’〉= a(1,0) , and one needs 2Φ ≠ 2Φ’ 

• Since Lμ transforms as a singlet 1L and Mμμ = 0, one needs 1L x 1L≠ 1

• At the same time the charged lepton mass matrix Me must be diagonal, 
requiring a flavour misalignment with respect to Mν

All this can be realized with the order-12 group Q6 ≡D’3 
that has representations 21, 22, 1, 1’, 1’’, 1’’’
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that (i) is minimal according to a few theoretical criteria (ii) is viable

• Assign the 3 lepton families as Li ∼ (2 , 1); non-trivial mixing needs a doublet 
flavon Φ ∼ 2; assume that 2 is the unique representation for the flavons 

• Demand viable mass matrices with the smallest number of free parameters: 
then the flavour group has to be D4 (the symmetry of a square), broken 
by〈Φν〉= (1,0) in Mν and by〈Φe〉= (1,1) in Me (or vice versa)

• Definite correlations among the observables follow

1σ 1σMass ordering is normal

One finds m1 ≳ 0.036 eV and mee ≳ 0.012 eV (the 
lower bounds corresponding to no CP violation)

For more 
general models 
of this type, see 
Hernandez & 
Smirnov 2012 
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The 3 families in a triplet

• In principle, the most ambitious possibility is that all 3 lepton 
families transform together under the flavour group

• The smallest group with a dim-3 representation is A4, the 
symmetry group of a regular tetrahedron (Ma-Rajasekaran, ...),              
with tensor product  3 x 3 = 1 + 1’ + 1’’ + 3s + 3a

• With appropriate assignments of the field, breaking A4 to Z3 in 
me and to Z2 in mν (Altarelli-Feruglio, ...), one can obtain tri-bi-
maximal mixing: sin2θ12 = 1/3, sin2θ23 = 1/2, sin2θ13 = 0.                         
Large corrections are needed by now ...

• To enforce this result a few technicalities are needed.                           
A different, economical implementation of the A4 symmetry can 
lead to a better agreement with data
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This is perfectly A4-symmetric, if leptons (le,lμ,lτ)
and flavons (φe,φμ,φτ) form A4-triplets:                                   
yoff (φelμlτ + leφμlτ + lelμφτ) is invariant

θ23 < π/4 θ23 > π/4

3σ range for θ12 
and
3σ range for θ13 
superimpose 
perfectly with       
1σ range for θ23  

As in the radiative model by  
Zee (PLB93,389,1980) and 

Wolfenstein (NPB175,93,1980)

(and no CP violation: δ=0,π)
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• Since a decade we know that Mνoff alone cannot accommodate Δm2ij

• However the A4-triplet of leptons form                                                
necessarily another A4-invariant:                                                                   
yuniv(lele + lμlμ + lτlτ)

• This does not affect the prediction for θ23 (and for δ)

• Me can be kept diagonal by breaking A4 to Z2 x Z2

• Now Δm2ij are reproduced, in addition mee and mlight are correlated

Normal
Ordering

Inverted
Ordering
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The case for non-maximal θ23

Several minimal flavour structures imply a deviation from maximal 
2-3 mixing of the size that is presently suggested by the data

top-down 1+2 model

bottom-up 1+2 model

off-diagonal + identity model

global  3ν fit at 1σ

Frigerio & Villanova del Moral 
1303.5284 - summary plot
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Room for future improvements

• Mν = off-diagonal + the identity seems a neat, appealing scenario

• One would like a dynamical reason for me << mμ << mτ.                     
In the present setting it can be realized, but in a bit clumsy way.

• Symmetry would prefer equal off-diagonal entries in Mν (A4→Z3). 
The required, small differences may be explained by RGEs.                       
In principle such model could be even more predictive...

• What is the mechanism inducing the off-diagonal & the identity  
terms? Radiative, seesaw, both? At what energy scale(s)?
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Conclusions

• Leptons provide a number of ways to explore new physics 
beyond the Standard Model

• So far, just one solid evidence: oscillations between 3 active 
neutrinos, that unveil the structure of lepton flavour

• Our attempt to provide a up-to-date theoretical interpretation

• Simplicity should be searched for in the structure of the lepton 
mass matrices, not in the value of the observables

• Minimal models can sharply predict future observables

• With the least possible assumptions, we found a preference for 
a deviation from maximal θ23 of the presently preferred size



• Lepton physics & the electroweak scale

• Lepton flavour observables: present & future data 

• Lepton flavour symmetries: where do we stand

• Minimal flavour structures:  a conspiracy for non-
maximal 2-3 mixing

• A connection between neutrinos and very light dark 
matter candidates
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pNGBs: generalities

• spontaneously symmetry breaking (SB) of a global 
symmetry: massless spin-0 field with only derivative 
interactions, an exact Nambu-Goldstone boson (NGB)

• explicitly SB (by a coupling or an anomaly): the pseudo-
NGB acquires a mass and non-derivative interactions

• approximate symmetry: the scale of spontaneous SB is much 
larger than the scale of explicit SB
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• The pNGB mass scale is not chosen ad-hoc: it is induced by a 
physical scale, e.g. ΛQCD or ΛEW, and it can be radiatively stable

• Explicit SB induces both the pNGB mass & its couplings to the 
SM, that control its relic density: one-to-one correspondence 
between mDM and ΩDM

• If the spontaneous SB scale f is very large, the pNGB is 
automatically long-lived: its lifetime grows with f2.                        
For DM one needs τDM > τ0 = 5⋅1017s [ τ(DM→e+e-) > 1026s ]
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n sterile neutrinos can receive their mass from SSB of 
their SU(n) symmetry:      mN = g f = g < φ eiθ/f > 
(generalization of the singlet Majoron model)

Chikashige, Mohapatra, Peccei ’81

The neutrino Yukawa couplings to the Higgs will break 
explicitly some of these family symmetries

Frigerio, Hambye, Masso ’11 

It turns out that this kind of pNGB θ is long-lived and a 
good DM candidate for mθ ∼ MeV
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θ-Higgs coupling in a nutshell

Many details & subtleties ...
Hill, Ross ’88; Little Higgs models;

Frigerio, Hambye, Masso ’11 



Freeze-out or... freeze-in

zf.o. = mθ/T

• Freeze-out: η thermalizes and later 
decouples, at T ≤ mη.                     
To obtain the correct ΩDM one 
needs mη ≈ 50 GeV.

e.g. Farina, Pappadopulo, Strumia, 2010
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Freeze-out or... freeze-in

zf.o. = mη/T

zf.o. = mθ/T

zf.i. = mh/T

from Hall, Jedamzik, 
March-Russell, West,  

2009Y = n/s

thermal value 
of Yη               freeze

-out

freeze-in

arrows indicate 
increasing values of λ

(of Yh)

• Freeze-in: a less-than-thermal 
population of η’s is produced by   
the annihilation/decay of heavier 
particles, X= h, W, Z.                                      
The η number density reaches a 
plateau at T ≈ mX.                                                                              
We found that ΩDM is reproduced 
for mη ≈ 3 MeV (λ≈10-10).

Frigerio, Hambye, Masso 2011 

• Freeze-out: η thermalizes and later 
decouples, at T ≤ mη.                     
To obtain the correct ΩDM one 
needs mη ≈ 50 GeV.

e.g. Farina, Pappadopulo, Strumia, 2010



θ-couplings to SM fermions

Since θ has the coupling  gθNN , and since N mixes with ν, 
θ decays into light neutrinos at tree-level



θ-couplings to SM fermions

Since θ has the coupling  gθNN , and since N mixes with ν, 
θ decays into light neutrinos at tree-level

Since ν couples to Z and W, at one-loop θ couples also to 
charged fermions, both leptons and quarks



Allowed regions for θ dark matter

Ωθ = ΩDM
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