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QFT potentials typically have multiple minima

Even tree-level potentials for
single scalars have in general
multiple minima:
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More scalars = more minima in general

Multiple scalars in general yield many vacua:

Finding the
global
minimum 1s
not trivial!

» Charge- and/or color-breaking (CCB) minima (VEVs for
charged or colored scalars)?

» Desired VEV combination may not be global minimum
(even non-CCB if there are enough VEVs required)
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Models with potentials that could develop CCB minima

Charged or colored scalars?
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Models with potentials that could develop CCB minima

Charged or colored scalars?
» Supersymmetry: scalar partners for every SM fermion (plus
lots of other stuff, not worth worrying about for this talk)
» Staus: charged scalars, partners of 7 leptons
» Stops: charged and colored scalars, partners of top quarks
» Smuons, sneutrinos, sbottoms, etc.

» Large Yukawa couplings and trilinear terms for (s)tops and,
for large tan 3, (s)taus = focus on stau and stop VEVs for
today

Also, today we’ll stick to the CMSSM.:

> mgcalar(QGUT) = ‘1\402
> mgaugino(QGUT) = M1/2
» [scalar-scalar-scalar factor|(Qgur) = Ao
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How a potential could develop CCB minima

Tree-level potential for non-zero stau VEVs:
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How a potential could develop CCB minima

Tree-level potential for non-zero stau VEVs:

Vtree(Hd = ’Ud/\/§, H, = Uu/\/iv TL = ,U%L/\/Z TR = U?R/\/ﬁ)
(gl Ud U2 + ng — 21}2 )2 + g%(’(}g — ’U2 — ’Ug )2) — Bﬂvdvu
+% <|'u| (Ud T ) + deUd + mH U + mTLUf'L + mTR,UzR) +
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How a potential could develop CCB minima

Tree-level potential for non-zero stau VEVs:

Vtree(Hd — Ud/ﬁ,Hu = Uu/ﬁ’%[/ = ’U7~_L/\/§,7:R = U,;R/\/ﬁ)
(97 (vG —vg 4+ vZ, — 202 )? +9§(03 —vp = v},)%) = Buvguy
+5 (10 +vp )+deUd+mH vy Mz, vz +mTRU3R) *

3_2

1

3
}L(YQ(vdw —I—vdv +v2 02 )—I—YTU Vs (Arvg — pvy,) + ...

TL TR V2 TL TR

Minima could develop where v- v- (A;v, — pv,)
gets more negative than “m?v? + \v?” is positive
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Evolution of a CCB minimum
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Evolution of a CCB minimum

Camargo-Molina, BO’L, Porod, Staub, arXiv:1309.7212
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CCB restricts 7 co-annihilation

Ag = +3 TeV tanﬁ = 40 " > O (arXiv:1309.7212)
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CCB restricts t co-annihilation

Ag = —6.444 TeV, tan B = 8.52, u < 0

mz, (GeV) contours (arXiv:1309.7212)
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CCB restricts region with correct my,
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CCB restricts region with correct my,

My = M/, =1 TeV, u > 0; my (GeV) contours

colors as before
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Analytic conditions

Vtree( 'Ud/\/i H, = Uu/ﬁ, T, = ’U7~_L/\/§, TR = ,U’FR/\/?)
=3 (91 (v —vi+v —202)° + g%(vg — vy —v3,)%) — Buvgv,
5 :u‘ (Ud +v ) + deUd + mH U + mTL,Uf'L + mTR”ER) +

3
éll (Yz(’l)g’lh + Ud’U + vTL TR) + %vTL/UTR (A-rvd - u) + ...
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Analytic conditions

d_Ud/\/_ Hu—vu/ﬁ L =0z, [V2,7R = v;,/V?2)

(
= 35 (97 (vg — v + U%L - QU%R) + gz(Ud —v2 — 02 )2) — By,
1

+35 (|2 (v3 + 02) + m%[dvfl +myy va +mZ v + mTRv3R> +
3 (YTQ(vdv~ + 02 -t vTL TR) + \);%UTLUTR (Arvy — pvy,) + ...
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Analytic conditions

Vtree( ’Ud/\/iHu:Uu/ﬁ’%L :U;L/\/ﬁ,%R:’U,;R/\/ﬁ)
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Analytic conditions

Vtree( _,Ud/ﬁ’Hu:Uu/ﬁ,%L:’U7~_L/\/§,7~_R:’U%R/\/§)

= 3_2 (gl (Ud U2 + Ug - 21;2 )2 —i—g%(vg - UQ - Ug )2) - By,
1

+3 ‘N‘ (Ud +v ) + deUd + mH v + mTLv%L + mTRv3R> +
le (Yz(vgw + ’Ud’U + vTL TR) + \Y/%/UTL/UTR (Aq-vd - IU/U'u,) + ...

Some conditions in the literature have often been (mis-)used:
» (Ag — 0.5M1/2) < 9ME +2.67TM /2 [“GUT”,(if Yy < 1)]
> A2 <3(my, + |ul* +mF, +mZ) [“A7]

» A7 <3(m3, +|ul® + mtgL + mth) [“A47]

> |(Yrvup)/(V2me)| < 56.9,/mz mzy, +57.1(mz, +1.03mz,) —
6
1.28 x 104GeV + LEDXI0°GeV2 _ g 41 5 106GeV3(—L— 4 0.983)
mE +mig mz LN
[“numeric” |
(“GUT”: Ellwanger, Rausch de Traubenberg, Savoy, Nucl. Phys. B492
“Ar7, “Ay”: Alvarez-Gaumé, Polchinski, Wise, Nucl. Phys. B221;
“numeric”: Kitahara, Yoshinaga, arXiv:1303.0461, JHEP)
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Evolution of CCB VEVs

SPS4 (M = 400GeV, M, /5 = 300GeV, tan 8 = 50, [u| > 0,
Ap = 0GeV) but with Ag — ...
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Evolution of CCB VEVs

SPS4 (M = 400GeV, M, /5 = 300GeV, tan 8 = 50, [u| > 0,
Ap = 0GeV) but with Ag — ..

Ao generator wv; v, Vi U
-484  SPheno 184 726 409 558
-484 SoftsSUSY 181 712 394 540
-513  SPheno 269 851 540 701
-513 SoftSUSY 274 846 532 694
-652  SPheno 485 1110 819 999
-647 SoftsSUSY 481 1097 800 981

Vy1Us U= v, #1:1:1:0at CCB minimum
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Evolution of CCB VEVs

SPS4 (M = 400GeV, M, /5 = 300GeV, tan 8 = 50, [u| > 0,
Ap = 0GeV) but with Ag — ..

Ao generator wv; v, Vi U
-484  SPheno 184 726 409 558
-484 SoftsSUSY 181 712 394 540
-513  SPheno 269 851 540 701
-513 SoftSUSY 274 846 532 694
-652  SPheno 485 1110 819 999
-647 SoftsSUSY 481 1097 800 981

Vg 0z 10z 10, #1:1:1:0 at CCB minimum
= not on line of “A,”!
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metimes it looks like analytic conditions do well
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Sometimes it looks like analytic conditions do well

My, =1 TeV, tan 8 = 10. 1 > 0: ms. (GeV) contours (1309.7212)

Ay [GeV]
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M, 0 [GGV]
Brown: “GUT”; Purple: “A.”; Orange: “A,”; Dashed black: mz, = mgo
Dark red: “A;” with small Vj (Casas, Lleyda, Munoz, Nucl. Phys. B471)
Bright blue: “A;” for tan 8 — oo (range) (Le Mouél, Phys. Rev. D64)
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¢ conditions do not alv 5 do well
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Analytic conditions do not always do well

M, /5 = 1000 GeV, mg = 1000 GeV, p > 0 (1309.7212)
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conditions can completely fail
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Analytic conditions can completely fail

Ap = +3 TeV, tan 8 =40, p > 0 (1309.7212)
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Vevacious: a tool to find global minima of multiscalar potentials!
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takes a model file (automatically generated by SARAH 4,
F. Staub arXiv:1309.7223)

takes an SLHA file

prepares and runs homotopy continuation code (HOM4PS2)
to find all tree-level extrema

prepares and runs gradient minimization code (PyMinuit)
to account for loop corrections

calculates tunneling time to undesired minima if found
(CosmoTransitions)
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Vevacious: a tool to find global minima of multiscalar potentials!

Vevacious is a new, publicly-available code, that:

>

takes a model file (automatically generated by SARAH 4,
F. Staub arXiv:1309.7223)

takes an SLHA file

prepares and runs homotopy continuation code (HOM4PS2)
to find all tree-level extrema

prepares and runs gradient minimization code (PyMinuit)
to account for loop corrections

calculates tunneling time to undesired minima if found
(CosmoTransitions)

http://vevacious.hepforge.org/
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Vevacious: based on recent progress

Coupled cubic equations are pretty damn hard!
Grobner bases:

» Decomposition of system using fancy algebra

» Has been used to investigate NMSSM
(Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)

» Computationally expensive, especially in terms of RAM
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Vevacious: based on recent progress

Coupled cubic equations are pretty damn hard!
Grobner bases:

» Decomposition of system using fancy algebra

» Has been used to investigate NMSSM
(Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)

» Computationally expensive, especially in terms of RAM
Homotopy continuation:

» Gradual deformation of simple system of equations into
target system

» Has been used to investigate SM with up to 5 extra scalars
(Maniatis, Mehta, arXiv:1203.0409, EPJ+)

» 3 public codes and programs: PHCpack, Bertini, HOM4PS2

Before Vevacious: only implemented on a
model-by-model basis, at tree level!
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How homo continuation works

Say we don’t know where the roots of fi(z) = z(2% + 1) are.
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How homotopy continuation works

Say we don’t know where the roots of fi(z) = z(2% + 1) are.

We do know that it’s a cubic, so we can construct
fs(z) = (z = 1)z(z + 1) knowing that the roots are z = —1,0, 1.
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How homotopy continuation works

Say we don’t know where the roots of f;(z) = z(z? + 1) are.

We do know that it’s a cubic, so we can construct
fs(z) = (z = 1)z(z + 1) knowing that the roots are z = —1,0, 1.

Red: real part of f Horizontal-ish axis: Re(z)
Blue: imaginary part of f Vertical-ish axis: Im(z)
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How homotopy continuation works

(1=t fs+tfy =22+ (2t — 1)z
» t =0, roots at z = —1,0,1
» ¢t = 0.01, roots at z = —0.98995, 0, 0.98995
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How homotopy continuation works

(1=t fs+tfy =22+ (2t — 1)z
» t =0, roots at z = —1,0,1
» ¢t = 0.01, roots at z = —0.98995, 0, 0.98995

> .
» £ =0.99, roots at z = —0.98995¢, 0, 0.98995¢
» t =1, roots at z = —1,0,¢

Animation time! (I hope...)
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A bit more homotopy continuation

There is a problem at ¢ = 0.5...
(1 —t)fs+tfy =23+ (2t — 1)z =23
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A bit more homotopy continuation

There is a problem at ¢ = 0.5...
(1 —t)fs+tfy =23+ (2t — 1)z =23
repeated root z = 0 three times!

Way around is to take (1 —t)fs + tcft

where c is a complex constant.

Random ¢ — path crossing (due to repeated root) happens only
on set of measure zero.
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Homotopy continuation for multiple variables

Take tree-level potential SPS1a as real function of two real
variables ¢q, ¢y

Analytically continue to complex function of two complex
variables — four real variables ¢/, = xq + iyq, ¢}, = Ty + 1Yy

Not same as original potential in terms of complex fields!
2 __

g = a:d yd + 2ixq9Yq
Starting tadpoles (units of GeV): ¢f = (200)%, ¢72 = (200)*
Complex factor ¢ = e!23

Starting root ¢/, = ¢, = —100 — 173.205:
t ¢ P
0.01 | -97.6572 - 172.323 1 | -100.297 - 173.262 i
0.5 5.92983 - 65.991 1 | -111.973 - 175.893 i
0.99 | -23.6607 - 3.37601 i | -233.192 - 26.8802 i
1.0 -25.0021 - 0.0 i -243.781 - 0.0 i
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Full set of starting and ending roots

The full set of solutions (¢, ¢/,):

—100 — 173.205i, —100 — 173.205i — —925, —243
—100 — 173.205i, 200 + 0i — +25, +243
—100 — 173.205i, 100 + 173.205i — 0, 0
200 + 0i, —100 — 173.205i — —1516.79i, —155.562i

200 + 0i, 200 + 0i — 00", “og”

200 4 0i, 100 + 173.205i — “oo”, “og”

100 + 173.205, —100 — 173.205i — “oo”, “og”
100 + 173.2054, 200 + 0i — “oo”, “og”

100 + 173.205¢, 100 + 173.2057 — +1516.797, +155.562¢

“o0”: target system does not have full amount of terms and
thus not maximal amount of roots: some starting roots must go
on divergent paths.

Note ¢q = —1516.797, ¢, — 155.56217 is not an extremum of the
potential, just a solution of the analytically continued tadpoles.
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Vevacious is fast enough for scans, can be adapted to new models easily

» Evaluating stability of a parameter point depends on model
For example, MSSM (not just CMSSM), vg, vy+ 4 extra VEVs
for 71,.r,tr, R, on my laptop:

» Finding all tree-level extrema takes < 0.5s

» Determining 1-loop global minimum takes 3s

» Estimating tunneling time stongly depends on relative
depth and location of global minimum compared to input
minimum: unfortunately 500s typical...

Making new model files with SARAH 4:
» Small modifications to normal SARAH model file:

» specify VEVs for whichever scalars
» modify mass eigenstates to accomodate more mixing

» Creating model file with SARAH takes minutes:
MakeVevacious[]
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Minimizing potentials not trivial, progress has been made,
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Minimizing potentials not trivial, progress has been made,
plenty more to do!
Plenty about which I didn’t have time to talk about...

» Can RGE improvement (i.e. evaluating at @ = |v|) be
incorporated into Vevacious algorithm?

» Can homotopy continuation be applied to QFT potentials
beyond tree level? One loop? RGE-improved?

» Can homotopy continuation be optimized for renormalizable
QFT potentials?

» Can PyMinuit stage be made faster? C++ instead of
Python?

» Major bottleneck right now is CosmoTransitions: 5
minutes zero temperature, 10 hours non-zero temperature...
Can this stage be optimized better? (Currently, tree-level is
acceptably fast.)
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Minimizing potentials not trivial:

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:

» Vitally important if extending Higgs sector with extra
scalars

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:

» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques
» Automated by SARAH + Vevacious

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques
» Automated by SARAH + Vevacious
The CMSSM is an excellent example:

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques
» Automated by SARAH + Vevacious
The CMSSM is an excellent example:

» Non-trivial VEV structure

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques
» Automated by SARAH + Vevacious
The CMSSM is an excellent example:
» Non-trivial VEV structure
» Often has CCB global minimum

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:
» Vitally important if extending Higgs sector with extra
scalars
» Multiple VEV-ing fields — rich vacuum structure
» Difficult, but feasible with modern techniques
» Automated by SARAH + Vevacious
The CMSSM is an excellent example:
» Non-trivial VEV structure
» Often has CCB global minimum
Avoiding short tunneling times to CCB global minima should
be a concern in choosing benchmarks and parameter fits!

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:

» Vitally important if extending Higgs sector with extra

scalars

» Multiple VEV-ing fields — rich vacuum structure

» Difficult, but feasible with modern techniques

» Automated by SARAH + Vevacious
The CMSSM is an excellent example:

» Non-trivial VEV structure

» Often has CCB global minimum
Avoiding short tunneling times to CCB global minima should
be a concern in choosing benchmarks and parameter fits!
Vevacious 2 will be even better: much larger region of validity,
possibly faster evaluation of global minimum, tolerably fast
non-zero-temperature tunneling times, maybe even “quite fast”
zero- and non-zero-temperate calculations.

B. O’Leary LAPTh, 14/11/2013 23 / 23



Conclusions

Minimizing potentials not trivial:

» Vitally important if extending Higgs sector with extra

scalars

» Multiple VEV-ing fields — rich vacuum structure

» Difficult, but feasible with modern techniques

» Automated by SARAH + Vevacious
The CMSSM is an excellent example:

» Non-trivial VEV structure

» Often has CCB global minimum
Avoiding short tunneling times to CCB global minima should
be a concern in choosing benchmarks and parameter fits!
Vevacious 2 will be even better: much larger region of validity,
possibly faster evaluation of global minimum, tolerably fast
non-zero-temperature tunneling times, maybe even “quite fast”
zero- and non-zero-temperate calculations.

Thank you for your attention!
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Bonus content

Backup slides



Tunneling times

» I'/ volume = Ae~B/"(1 + O(h))
» A is solitonic solution, should be ~ energy scale of potential

» B ~ ([surface tension]/[energy density difference])® for small
energy density differences (“thin wall” bubbles)

» B very strongly dependent on energy barrier for large depth
differences (“thick wall” bubbles)



Scale and loop order dependence: halving
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Scale and loop order dependence: doubling @)
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