Vacuous falsehoods: how sure can we be that the desired vacuum of our model is stable?

Ben O'Leary in collaboration with José Eliel Camargo Molina, Werner Porod, and Florian Staub

Julius-Maximilians-Universität Würzburg

Laboratoire d'Annecy-le-Vieux de Physique Théorique Annecy-le-Vieux, November 14th, 2013

Even tree-level potentials for single scalars have in general multiple minima:

Even tree-level potentials for single scalars have in general multiple minima:

Top loops create extra minima for high Higgs field values in SM: SM Higgs potential. $M_h = 125 \text{ GeV}$ SM Higgs potential. $M_h = 126 \text{ GeV}$ SM Higgs potential. $M_h = 126 \text{ GeV}$ $M_h = 171.579 \text{ GeV}$ $\alpha_h(M_2) = 0.1184$ $\alpha_h(M_2) = 0.1184$ $M_h = 171.579 \text{ GeV}$ $M_H = 171.579 \text{ GeV}$ $M_H = 171.579 \text{ GeV}$

QFT potentials typically have multiple minima

Even tree-level potentials for single scalars have in general multiple minima:

Bgsov Lie Blanck units

V114 in Planck units

0.01

0.003

SM is probably metastable!

Higgs vev h in Planck units APTh, 14/11/2013

1 / 23

B. O'Leary

LAPTh, 14/11/2013

2 / 23

Multiple scalars in general yield many vacua:

Multiple scalars in general yield many vacua:

Finding the global minimum is not trivial!

Multiple scalars in general yield many vacua:

Finding the global minimum is not trivial!

Charge- and/or color-breaking (CCB) minima (VEVs for charged or colored scalars)?

Multiple scalars in general yield many vacua:

Finding the global minimum is not trivial!

- Charge- and/or color-breaking (CCB) minima (VEVs for charged or colored scalars)?
- ► Desired VEV combination may not be global minimum (even non-CCB if there are enough VEVs required)

 Supersymmetry: scalar partners for every SM fermion (plus lots of other stuff, not worth worrying about for this talk)

- ► Supersymmetry: scalar partners for every SM fermion (plus lots of other stuff, not worth worrying about for this talk)
- \blacktriangleright Staus: charged scalars, partners of τ leptons
- \blacktriangleright Stops: charged and colored scalars, partners of top quarks
- ▶ Smuons, sneutrinos, sbottoms, *etc*.

- Supersymmetry: scalar partners for every SM fermion (plus lots of other stuff, not worth worrying about for this talk)
- \blacktriangleright Staus: charged scalars, partners of τ leptons
- \blacktriangleright Stops: charged and colored scalars, partners of top quarks
- ▶ Smuons, sneutrinos, sbottoms, *etc*.
- Large Yukawa couplings and trilinear terms for (s)tops and, for large $\tan \beta$, (s)taus \Rightarrow focus on stau and stop VEVs for today

- Supersymmetry: scalar partners for every SM fermion (plus lots of other stuff, not worth worrying about for this talk)
- \blacktriangleright Staus: charged scalars, partners of τ leptons
- \blacktriangleright Stops: charged and colored scalars, partners of top quarks
- ▶ Smuons, sneutrinos, sbottoms, *etc*.
- Large Yukawa couplings and trilinear terms for (s)tops and, for large $\tan \beta$, (s)taus \Rightarrow focus on stau and stop VEVs for today

Also, today we'll stick to the CMSSM:

- Supersymmetry: scalar partners for every SM fermion (plus lots of other stuff, not worth worrying about for this talk)
- \blacktriangleright Staus: charged scalars, partners of τ leptons
- ▶ Stops: charged and colored scalars, partners of top quarks
- ▶ Smuons, sneutrinos, sbottoms, *etc.*
- Large Yukawa couplings and trilinear terms for (s)tops and, for large tan β, (s)taus ⇒ focus on stau and stop VEVs for today

Also, today we'll stick to the CMSSM:

- $m_{\text{scalar}}^2(Q_{\text{GUT}}) = M_0^2$
- $m_{\text{gaugino}}(Q_{\text{GUT}}) = M_{1/2}$
- [scalar-scalar factor](Q_{GUT}) = A_0

Tree-level potential for non-zero stau VEVs:

Tree-level potential for non-zero stau VEVs:

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Tree-level potential for non-zero stau VEVs:

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Minima could develop where $v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} (A_{\tau} v_d - \mu v_u)$ gets more negative than " $m^2 v^2 + \lambda v^4$ " is positive

Evolution of a CCB minimum

Evolution of a CCB minimum

Camargo-Molina, BO'L, Porod, Staub, arXiv:1309.7212

 $m_0 = 400 \text{ GeV}, \ M_{1/2} = 300 \text{ GeV}, \ \tan \beta = 50, \ \mu > 0$ B. O'Leary LAPTh, 14/11/2013

5 / 23

CCB restricts $\tilde{\tau}$ co-annihilation

CCB restricts $\tilde{\tau}$ co-annihilation

blue: metastable ($\tau_{\text{tunnel}} > 3 \text{ Gy}$); green: stable yellow region: correct relic density; black: $m_{\tilde{\tau}_1} = m_{\tilde{\chi}_1^0}$ B. O'Leary

CCB restricts \tilde{t} co-annihilation

CCB restricts \tilde{t} co-annihilation

 $A_0 = -6.444 \text{ TeV}, \tan \beta = 8.52, \mu < 0$ $m_{\tilde{t}_1}$ (GeV) contours (arXiv:1309.7212)

 $M_0 = M_{1/2} = 1$ TeV, $\mu > 0$; m_h (GeV) contours colors as before (1309.7212)

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2 \right) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Some conditions in the literature have often been (mis-)used:

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Some conditions in the literature have often been (mis-)used: • $(A_0 - 0.5M_{1/2})^2 < 9M_0^2 + 2.67M_{1/2}^2$ ["GUT",(if $Y_f \ll 1$)]

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Some conditions in the literature have often been (mis-)used:

- $(A_0 0.5M_{1/2})^2 < 9M_0^2 + 2.67M_{1/2}^2$ ["GUT", (if $Y_f \ll 1$)]
- $\blacktriangleright \ A_{\tau}^2 < 3(m_{H_d}^2 + |\mu|^2 + m_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2) \ [``A_{\tau}"]$

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_{\tau}^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_{\tau}}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_{\tau} v_d - \mu v_u \right) + \dots \end{split}$$

Some conditions in the literature have often been (mis-)used:

- $(A_0 0.5M_{1/2})^2 < 9M_0^2 + 2.67M_{1/2}^2$ ["GUT", (if $Y_f \ll 1$)]
- $\blacktriangleright \ A_{\tau}^2 < 3(m_{H_d}^2 + |\mu|^2 + m_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2) \ [``A_{\tau}"]$
- $A_t^2 < 3(m_{H_u}^2 + |\mu|^2 + m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2)$ [" A_t "]

$$\begin{split} V^{\text{tree}}(H_d &= v_d/\sqrt{2}, H_u = v_u/\sqrt{2}, \tilde{\tau}_L = v_{\tilde{\tau}_L}/\sqrt{2}, \tilde{\tau}_R = v_{\tilde{\tau}_R}/\sqrt{2}) \\ &= \frac{1}{32} \left(g_1^2 (v_d^2 - v_u^2 + v_{\tilde{\tau}_L}^2 - 2v_{\tilde{\tau}_R}^2)^2 + g_2^2 (v_d^2 - v_u^2 - v_{\tilde{\tau}_L}^2)^2 \right) - B_\mu v_d v_u \\ &+ \frac{1}{2} \left(|\mu|^2 (v_d^2 + v_u^2) + m_{H_d}^2 v_d^2 + m_{H_u}^2 v_u^2 + m_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2 v_{\tilde{\tau}_R}^2 \right) + \\ &\frac{1}{4} \left(Y_\tau^2 (v_d^2 v_{\tilde{\tau}_L}^2 + v_d^2 v_{\tilde{\tau}_R}^2 + v_{\tilde{\tau}_L}^2 v_{\tilde{\tau}_R}^2) + \frac{Y_\tau}{\sqrt{2}} v_{\tilde{\tau}_L} v_{\tilde{\tau}_R} \left(A_\tau v_d - \mu v_u \right) + \dots \end{split}$$

Some conditions in the literature have often been (mis-)used:

- $(A_0 0.5M_{1/2})^2 < 9M_0^2 + 2.67M_{1/2}^2$ ["GUT", (if $Y_f \ll 1$)]
- $A_{\tau}^2 < 3(m_{H_d}^2 + |\mu|^2 + m_{\tilde{\tau}_L}^2 + m_{\tilde{\tau}_R}^2)$ [" A_{τ} "]
- $A_t^2 < 3(m_{H_u}^2 + |\mu|^2 + m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2)$ [" A_t "]
- ► $|(Y_{\tau}v_{u}\mu)/(\sqrt{2}m_{\tau})| < 56.9\sqrt{m_{\tilde{\tau}_{L}}m_{\tilde{\tau}_{R}}} + 57.1(m_{\tilde{\tau}_{L}} + 1.03m_{\tilde{\tau}_{R}}) 1.28 \times 10^{4} \text{GeV} + \frac{1.67 \times 10^{6} \text{GeV}^{2}}{m_{\tilde{\tau}_{L}} + m_{\tilde{\tau}_{R}}} 6.41 \times 10^{6} \text{GeV}^{3}(\frac{1}{m_{\tilde{\tau}_{L}}^{2}} + \frac{0.983}{m_{\tilde{\tau}_{R}}^{2}})$ ["numeric"]

("GUT": Ellwanger, Rausch de Traubenberg, Savoy, Nucl. Phys. B492 " A_{τ} ", " A_t ": Alvarez-Gaumé, Polchinski, Wise, Nucl. Phys. B221; "numeric": Kitahara, Yoshinaga, arXiv:1303.0461, JHEP)

B. O'Leary

LAPTh, 14/11/2013

9 / 23

Evolution of CCB VEVs

SPS4 ($M_0 = 400$ GeV, $M_{1/2} = 300$ GeV, $\tan \beta = 50$, $|\mu| > 0$, $A_0 = 0$ GeV) but with $A_0 \rightarrow \dots$

SPS4 ($M_0 = 400$ GeV, $M_{1/2} = 300$ GeV, $\tan \beta = 50$, $|\mu| > 0$, $A_0 = 0$ GeV) but with $A_0 \rightarrow \dots$

A_0	generator	v_d	v_u	$v_{ ilde{ au}_L}$	$v_{ ilde{ au}_R}$
-484	SPheno	184	726	409	558
-484	SoftSUSY	181	712	394	540
-513	SPheno	269	851	540	701
-513	SoftSUSY	274	846	532	694
-652	SPheno	485	1110	819	999
-647	SoftSUSY	481	1097	800	981

 $v_d: v_{\tilde{\tau}_L}: v_{\tilde{\tau}_R}: v_u \neq 1: 1: 1: 0$ at CCB minimum

SPS4 ($M_0 = 400$ GeV, $M_{1/2} = 300$ GeV, $\tan \beta = 50$, $|\mu| > 0$, $A_0 = 0$ GeV) but with $A_0 \rightarrow \dots$

A_0	generator	v_d	v_u	$v_{ ilde{ au}_L}$	$v_{ ilde{ au}_R}$
-484	SPheno	184	726	409	558
-484	SoftSUSY	181	712	394	540
-513	SPheno	269	851	540	701
-513	SoftSUSY	274	846	532	694
-652	SPheno	485	1110	819	999
-647	SoftSUSY	481	1097	800	981

 $\begin{array}{l} v_d: v_{\tilde{\tau}_L}: v_{\tilde{\tau}_R}: v_u \neq 1: 1: 1: 0 \text{ at CCB minimum} \\ \Rightarrow \text{ not on line of "} A_{\tau}"! \end{array}$

B. O'Leary

LAPTh, 14/11/2013

11 / 23
Sometimes it looks like analytic conditions do well

 $M_{1/2} = 1$ TeV, $\tan \beta = 10, \ \mu > 0; \ m_{\tilde{\tau}}$ (GeV) contours (1309.7212)

M_0 [GeV]

Brown: "GUT"; Purple: " A_{τ} "; Orange: " A_{t} "; Dashed black: $m_{\tilde{\tau}_{1}} = m_{\tilde{\chi}_{1}^{0}}$ Dark red: " A_{t} " with small $v_{\tilde{b}}$ (Casas, Lleyda, Munoz, Nucl. Phys. B471) Bright blue: " A_{t} " for tan $\beta \to \infty$ (range) (Le Mouël, Phys. Rev. D64)

B. O'Leary

LAPTh, 14/11/2013

B. O'Leary

LAPTh, 14/11/2013

Analytic conditions do not always do well

 $M_{1/2} = 1000 \text{ GeV}, m_0 = 1000 \text{ GeV}, \mu > 0 \text{ (1309.7212)}$

B. O'Leary

LAPTh, 14/11/2013

$A_0 = +3$ TeV, $\tan \beta = 40, \, \mu > 0 \, (1309.7212)$

B. O'Leary

LAPTh, 14/11/2013

Vevacious is a new, publicly-available code, that:

B. O'Leary

LAPTh, 14/11/2013

Vevacious is a new, publicly-available code, that:

► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)

V C V a C i O U S B O'Leary **LAPTh**, 14/11/2013 14 / 23

Vevacious is a new, publicly-available code, that:

- ► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)
- \blacktriangleright takes an SLHA file

V C V A C I O U S B. O'Leary LAPTh, 14/11/2013 14 / 23

- ► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)
- \blacktriangleright takes an SLHA file
- ► prepares and runs homotopy continuation code (HOM4PS2) to find *all* tree-level extrema

- ► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)
- \blacktriangleright takes an SLHA file
- ► prepares and runs homotopy continuation code (HOM4PS2) to find *all* tree-level extrema
- prepares and runs gradient minimization code (PyMinuit) to account for loop corrections

- ► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)
- \blacktriangleright takes an SLHA file
- ► prepares and runs homotopy continuation code (HOM4PS2) to find *all* tree-level extrema
- prepares and runs gradient minimization code (PyMinuit) to account for loop corrections
- calculates tunneling time to undesired minima if found (CosmoTransitions)

LAPTh, 14/11/2013

- ► takes a model file (automatically generated by SARAH 4, F. Staub arXiv:1309.7223)
- \blacktriangleright takes an SLHA file
- ► prepares and runs homotopy continuation code (HOM4PS2) to find *all* tree-level extrema
- prepares and runs gradient minimization code (PyMinuit) to account for loop corrections
- calculates tunneling time to undesired minima if found (CosmoTransitions)

http://vevacious.hepforge.org/

Vevacious: based on recent progress

Coupled cubic equations are pretty damn hard!

- ▶ Decomposition of system using fancy algebra
- Has been used to investigate NMSSM (Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)
- \blacktriangleright Computationally expensive, especially in terms of RAM

- ▶ Decomposition of system using fancy algebra
- Has been used to investigate NMSSM (Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)
- \blacktriangleright Computationally expensive, especially in terms of RAM

Homotopy continuation:

- \blacktriangleright Decomposition of system using fancy algebra
- Has been used to investigate NMSSM (Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)
- ▶ Computationally expensive, especially in terms of RAM

Homotopy continuation:

- Gradual deformation of simple system of equations into target system
- ► Has been used to investigate SM with up to 5 extra scalars (Maniatis, Mehta, arXiv:1203.0409, EPJ+)
- ► ∃ public codes and programs: PHCpack, Bertini, HOM4PS2

- \blacktriangleright Decomposition of system using fancy algebra
- Has been used to investigate NMSSM (Maniatis, von Manteuffel, Nachtmann, arXiv:hep-ph/0608314, EJPC)
- ▶ Computationally expensive, especially in terms of RAM

Homotopy continuation:

- Gradual deformation of simple system of equations into target system
- ► Has been used to investigate SM with up to 5 extra scalars (Maniatis, Mehta, arXiv:1203.0409, EPJ+)
- \blacktriangleright \exists public codes and programs: PHCpack, Bertini, HOM4PS2

Before Vevacious: only implemented on a model-by-model basis, at tree level!

Say we don't know where the roots of $f_t(z) = z(z^2 + 1)$ are.

Say we don't know where the roots of $f_t(z) = z(z^2 + 1)$ are.

We do know that it's a cubic, so we can construct $f_s(z) = (z-1)z(z+1)$ knowing that the roots are z = -1, 0, 1.

Say we don't know where the roots of $f_t(z) = z(z^2 + 1)$ are.

We do know that it's a cubic, so we can construct $f_s(z) = (z-1)z(z+1)$ knowing that the roots are z = -1, 0, 1.

Now we deform f_s to f_t keeping track of the roots.

Red: real part of fBlue: imaginary part of f

Horizontal-ish axis: $\operatorname{Re}(z)$ Vertical-ish axis: $\operatorname{Im}(z)$

$$(1-t)f_s + tf_t = z^3 + (2t-1)z$$

•
$$t = 0$$
, roots at $z = -1, 0, 1$

▶ t = 0.01, roots at z = -0.98995, 0, 0.98995

$$(1-t)f_s + tf_t = z^3 + (2t-1)z$$

- t = 0, roots at z = -1, 0, 1
- ▶ t = 0.01, roots at z = -0.98995, 0, 0.98995

▶ ...

$$(1-t)f_s + tf_t = z^3 + (2t-1)z$$

- t = 0, roots at z = -1, 0, 1
- ▶ t = 0.01, roots at z = -0.98995, 0, 0.98995
- ▶ ...
- ▶ t = 0.99, roots at z = -0.98995i, 0, 0.98995i
- t = 1, roots at z = -i, 0, i

$$(1-t)f_s + tf_t = z^3 + (2t-1)z$$

- t = 0, roots at z = -1, 0, 1
- ▶ t = 0.01, roots at z = -0.98995, 0, 0.98995
- ▶ ...
- ▶ t = 0.99, roots at z = -0.98995i, 0, 0.98995i
- t = 1, roots at z = -i, 0, i

Animation time! (I hope...)

A bit more homotopy continuation

There is a problem at t = 0.5... $(1-t)f_s + tf_t = z^3 + (2t-1)z = z^3$

A bit more homotopy continuation

There is a problem at t = 0.5... $(1-t)f_s + tf_t = z^3 + (2t-1)z = z^3$ repeated root z = 0 three times!

A bit more homotopy continuation

There is a problem at t = 0.5... $(1-t)f_s + tf_t = z^3 + (2t-1)z = z^3$ repeated root z = 0 three times!

Way around is to take $(1-t)f_s + tcf_t$ where c is a complex constant. Random $c \rightarrow path \ crossing$ (due to repeated root) happens only on set of measure zero.

B. O'Leary

LAPTh, 14/11/2013

Take tree-level potential SPS1a as real function of two real variables ϕ_d, ϕ_u

Analytically continue to complex function of two complex variables \rightarrow four real variables $\phi'_d = x_d + iy_d$, $\phi'_u = x_u + iy_u$

Not same as original potential in terms of complex fields! $\phi_d'^2 = x_d^2 - y_d^2 + 2ix_dy_d$

Starting tadpoles (units of GeV): $\phi_d^{\prime 3} = (200)^3$, $\phi_u^{\prime 3} = (200)^3$ Complex factor $c = e^{1.23i}$

Starting root $\phi_d'=\phi_u'=-100-173.205i$

\mathbf{t}	ϕ_d'	ϕ'_u
0.01	-97.6572 - 172.323 i	-100.297 - 173.262 i
0.5	5.92983 - 65.991 i	-111.973 - 175.893 i
0.99	-23.6607 - 3.37601 i	-233.192 - 26.8802 i
1.0	-25.0021 - 0.0 i	-243.781 - 0.0 i
B. O'Leary		LAPTh, 14/11/2013

The full set of solutions (ϕ'_d, ϕ'_u) :

" ∞ ": target system does not have full amount of terms and thus not maximal amount of roots: some starting roots must go on divergent paths.

Note $\phi_d = -1516.79i$, $\phi_u - 155.562i$ is *not* an extremum of the potential, just a solution of the analytically continued tadpoles.

Vevacious is fast enough for scans, can be adapted to new models easily

▶ Evaluating stability of a parameter point depends on model

B. O'Leary

LAPTh, 14/11/2013

Vevacious is fast enough for scans, can be adapted to new models easily

▶ Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:

B. O'Leary LAPTh, 14/11/2013 21 / 23

Vevacious is fast enough for scans, can be adapted to new models easily

• Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:

• Finding *all* tree-level extrema takes < 0.5s
- Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:
 - \blacktriangleright Finding all tree-level extrema takes <0.5s
 - \blacktriangleright Determining 1-loop global minimum takes 3s

- Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:
 - \blacktriangleright Finding all tree-level extrema takes <0.5s
 - \blacktriangleright Determining 1-loop global minimum takes 3s
 - Estimating tunneling time stongly depends on relative depth and location of global minimum compared to input minimum: unfortunately 500s typical...

- Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:
 - \blacktriangleright Finding all tree-level extrema takes <0.5s
 - \blacktriangleright Determining 1-loop global minimum takes 3s
 - ► Estimating tunneling time stongly depends on relative depth and location of global minimum compared to input minimum: unfortunately 500s typical...

Making new model files with SARAH 4:

- ► Small modifications to normal SARAH model file:
 - ▶ specify VEVs for whichever scalars
 - ▶ modify mass eigenstates to accomodate more mixing

B. O'Leary

LAPTh, 14/11/2013

- Evaluating stability of a parameter point depends on model For example, MSSM (not just CMSSM), v_d , v_u + 4 extra VEVs for $\tilde{\tau}_{L,R}$, $\tilde{t}_{L,R}$, on my laptop:
 - \blacktriangleright Finding *all* tree-level extrema takes < 0.5s
 - \blacktriangleright Determining 1-loop global minimum takes 3s
 - ▶ Estimating tunneling time stongly depends on relative depth and location of global minimum compared to input minimum: unfortunately 500s typical...

Making new model files with SARAH 4:

- ► Small modifications to normal SARAH model file:
 - ▶ specify VEVs for whichever scalars
 - ▶ modify mass eigenstates to accomodate more mixing
- Creating model file with SARAH takes minutes:
 MakeVevacious[]

Minimizing potentials not trivial, progress has been made, plenty more to do!

V C V A C I O U S B. O'Leary LAPTh, 14/11/2013 22 / 23

Minimizing potentials not trivial, progress has been made, plenty more to do! Plenty about which I didn't have time to talk about...

- ► Can RGE improvement (*i.e.* evaluating at Q = |v|) be incorporated into Vevacious algorithm?
- ► Can homotopy continuation be applied to QFT potentials beyond tree level? One loop? RGE-improved?

LAPTh, 14/11/2013

Minimizing potentials not trivial, progress has been made, plenty more to do! Plenty about which I didn't have time to talk about...

- ► Can RGE improvement (*i.e.* evaluating at Q = |v|) be incorporated into Vevacious algorithm?
- ► Can homotopy continuation be applied to QFT potentials beyond tree level? One loop? RGE-improved?
- ► Can homotopy continuation be optimized for renormalizable QFT potentials?

Minimizing potentials not trivial, progress has been made, plenty more to do! Plenty about which I didn't have time to talk about...

- ► Can RGE improvement (*i.e.* evaluating at Q = |v|) be incorporated into Vevacious algorithm?
- ► Can homotopy continuation be applied to QFT potentials beyond tree level? One loop? RGE-improved?
- ► Can homotopy continuation be optimized for renormalizable QFT potentials?
- ► Can PyMinuit stage be made faster? C++ instead of Python?

Minimizing potentials not trivial, progress has been made, plenty more to do! Plenty about which I didn't have time to talk about...

- ► Can RGE improvement (*i.e.* evaluating at Q = |v|) be incorporated into Vevacious algorithm?
- ► Can homotopy continuation be applied to QFT potentials beyond tree level? One loop? RGE-improved?
- ► Can homotopy continuation be optimized for renormalizable QFT potentials?
- ► Can PyMinuit stage be made faster? C++ instead of Python?
- ► Major bottleneck right now is CosmoTransitions: 5 minutes zero temperature, 10 hours non-zero temperature... Can this stage be optimized better? (Currently, tree-level is acceptably fast.)

Conclusions

Minimizing potentials not trivial:

B. O'Leary

LAPTh, 14/11/2013

Conclusions

Minimizing potentials not trivial:

 Vitally important if extending Higgs sector with extra scalars

V C V a C i 0 U S B O'Leary **LAPTh**, 14/11/2013 **23** / 23

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure

V C V a C I O U S B. O'Leary **LAPTh. 14/11/2013 23 / 23**

- ▶ Vitally important if extending Higgs sector with extra scalars
- Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques

B. O'Leary LAPTh, 14/11/2013

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- ► Automated by SARAH + Vevacious

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

▶ Non-trivial VEV structure

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

- ▶ Non-trivial VEV structure
- ▶ Often has CCB global minimum

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

- ▶ Non-trivial VEV structure
- ▶ Often has CCB global minimum

Avoiding short tunneling times to CCB global minima should be a concern in choosing benchmarks and parameter fits!

LAPTh, 14/11/2013

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

- ▶ Non-trivial VEV structure
- ▶ Often has CCB global minimum

Avoiding short tunneling times to CCB global minima should be a concern in choosing benchmarks and parameter fits!

Vevacious 2 will be *even* better: much larger region of validity, possibly faster evaluation of global minimum, tolerably fast non-zero-temperature tunneling times, maybe even "quite fast" zero- and non-zero-temperate calculations.

LAPTh, 14/11/2013

- ► Vitally important if extending Higgs sector with extra scalars
- \blacktriangleright Multiple VEV-ing fields \rightarrow rich vacuum structure
- ▶ Difficult, but feasible with modern techniques
- Automated by SARAH + Vevacious

The CMSSM is an excellent example:

- ▶ Non-trivial VEV structure
- ▶ Often has CCB global minimum

Avoiding short tunneling times to CCB global minima should be a concern in choosing benchmarks and parameter fits!

Vevacious 2 will be *even* better: much larger region of validity, possibly faster evaluation of global minimum, tolerably fast non-zero-temperature tunneling times, maybe even "quite fast" zero- and non-zero-temperate calculations.

Thank you for your attention!

B. O'Leary

LAPTh, 14/11/2013

Backup slides

- Γ / volume = $Ae^{-B/\hbar}(1 + \mathcal{O}(\hbar))$
- \blacktriangleright A is solitonic solution, should be \sim energy scale of potential
- ► $B \sim ([\text{surface tension}]/[\text{energy density difference}])^3$ for small energy density differences ("thin wall" bubbles)
- ► B very strongly dependent on energy barrier for large depth differences ("thick wall" bubbles)

Scale and loop order dependence: halving Q

Scale and loop order dependence: doubling Q

