T2K new results

1/12

T2K

Benjamin Quilain (Laboratoire Leprince-Ringuet) for the <u>T2K collaboration</u>

Outline :

1-Essential of T2K experiment

2-First discovery v_{e} appearance

3-Results on v_{μ} disapperance

4-Discussion on T2K future

GDR Neutrino

The T2K Experiment

- Observation v_{e} appearance in a v_{u} beam & v_{u} disapperance

- <u>Off-axis experiment :</u>
 - => **Tune energy spectrum** to 600 MeV, to maximize oscillation probability at 295km
 - **Higher statistics** of oscillated neutrinos
 - **Reduce contamination** from non oscillated high energy neutrinos

Flux knowledge is absolutely necessary (Rate & Shape)

« On axis » constraints on flux

Complementary near detectors :

On Axis measurements :

- Direct measurements by detectors on proton beam line
- Hadron production Xsections & directions (measured thanks to NA61/SHINE collaboration on a replica target)
- On Axis near detector: INGRID
 - Monitor beam stability

Since the beginning of T2K, 6.6 . 10²⁰ POTs of data

• <u>Monitor off-axis angle :</u> indirect constraints on neutrino spectra

Stability of beam direction is much better than 1mrad during whole run period

Direct constraints on flux

Neutrino flux from on-axis measurements

4/12

Far Detector : Super Kamiokande

- 50 kT water Tcherenkov detector (FV = 22.5 kT)
- T2K event selection is based on a [-2, 10] µs time window around beam trigger
- <u>Very good μ/e separation (ring</u> shape):
 - 97.7 % purity on v_e sample for 62.9 % efficiency
- π^0 contamination to $\nu_{_{\rm e}}$ sample for asymmetric decays

Recent update on v_{a} selection

6/12

- A new reconstruction algorithm has been developped at SK
- Improved PID and more specifically, better π^0 fitter
- In this study, only used for the π^0 mass cut

	Old + E_{v}^{rec}	New+ E_{υ}^{rec}
Efficiency	90.1 %	88.5 %
NC rejection efficiency	79.7 %	92.0 %

Super Kamiokande v_{a} selection

Breakdown

Improved analysis (ND280 constraints & π⁰ rejection) & statistics

<u>2012 :</u> 11 ν_e events observed for 3.3 background events

 $2013: 28 \nu_{e}$ events observed for 4.9 background events

Observation of v_{a} appearance

• Fix all parameters except θ_{13} , do not take into account error on osc. param

Benjamin Quilain

The δ_{cp} Fit

If $\delta_{cp} = 0$: very high $\sin^2(2\theta_{13})$ as compared to reactor value: $\sin^2(2\theta_{13}) = 0.096$ \rightarrow What if this tension is due to δ_{cp} ?

The v_{μ} disappearance

Presented at last GDR : <u>Accepted for PRL publication</u>

all pa	rameters to PDG	<u>values except 0</u> 23	and
<u>n²₃₂ </u> :	$sin^{2}(2\theta_{13})=0.098$ $sin^{2}(2\theta_{12})=0.857$	$\Delta m_{21}^2 = 7.5 \times 10^{-5}$ $\delta_{cp} = 0$	eV^{2}/c^{4}
	$\frac{\text{Best Fit Point}}{\sin^2(\theta_{23})=0.51}$ $ \Delta m^2_{32} =2.44$	t: 14 ± 0.082 $4^{+0.17*}_{-0.15} 10^{-3} \text{ eV}^2/\text{c}^4$	

- Compatible with maximal mixing angle
- Higher octant is barely favoured

 $\sin^2 2 heta_{13} = 0.1$, $\sin^2 heta_{23} = 0.5$, $\Delta m^2_{32} = 2.4 imes 10^{-3} \ {
m eV}^2$

- Sensitivity to possible maximal mixing & octant degeneracy will increase in upcoming years (careful : Sensitivity to θ_{23} > predictions)
- Combined fit with SK is studied

Future sensitivity on δ

• What will be T2K sensitivity on δ_{cn} with T2K full stat (7.8*10²¹ POTs)?

CD

Conclusions & Future

<u>Conclusions</u>: So far, T2K accumulated **8.3** % **of total #POTs**:

- First discovery of v_{e} appearance in a v_{u} beam
- v_{μ} disappearance measurement **favours maximal mixing :** T2K is now experiment with **best sensitivity on sin²**($2\theta_{23}$)

Future:

- Combined $\theta_{_{23}}/\theta_{_{13}}$ fit
- + $\Theta^{}_{_{23}}/~|\Delta m^2^{}_{_{32}}|$ high precision measurement
- Dedicated task force defining future data taking policy to constraint MH & $\delta_{_{\rm CD}}$
- Anti-Neutrino test run is forecast : Switch horn current in 2014 (1*10²⁰ POT)
- LINAC upgrade by April 2014 to operate MR from 220 kW today to 400kW : $8*10^{20}$ POT/year
- Future MR upgrade to operate at 750 kW (accepted, done by 2018)

Additionnal slides

Primary Beam Informations

Beam is, only for understanding, divided in 2 parts :

primary (before target) and secondary (after) beam line.

There are different detectors to monitore each beam parameter on the primary beamline:

1-<u>Intensity</u> is monitored by CTs (5 current transformers) which are solenoid => passage of protons creats induced current : 2 % absolute uncertainty on #POT, 0.5 % in relative

2-**Position** is monitored by electrostatic monitors (21) and secondary emission monitors (19)

3-Proton loss is monitored by beam loss monitors

Secondary Beam Informations

Data taking history

Integrated POT so far (Power history)

Constraints on flux

Near Detector complex

On Axis : INGRID detector

Fluctuation of v interaction rate (/10¹⁹p.o.t) is less than 0.7% whole run period

- Constraint on rate : Monitor V_{μ} beam stability : constraint
- spectrum rate

٠

 Indirect constraint on Shape : Off-axis angle (<1 mrad) to constraint spectrum shape

Stability of beam direction is much better than 1mrad during whole run period

Off Axis : ND280 detector complex

Interaction ID in ND280

1-CCNuMu : Muon 1st identification, geometric only:

1-Starting in FGD1 FV2-Propagating at least in TPC23-If several pass 1 & 2, select highest momentum track among them4-Check negative curvature in the B field

Cutting all tracks that going in TPC1 : reduce BG & also, remove possible backward going particles from vertex in FGD1 => predominant foward-going muons

Then second identification starts, based on a PID (dE/dX based mainly) **=> select final CC NuMu inclusive sample**

2-This CC inclusive sample is divided in 2 : CCQE and CcnonQE. CCQE is selected:

A-Only one muon-like track

B-No additionnal tracks passing trough FGD1 & TPC2

C-No electrons from muon decay at rest in FGD1 (Michel electron) which

correspond in most of the case to a **stopped or low energy Pion**

Interaction ID in ND280

From the previous slide that CC0Pi+ corresponds to our former CCQE interaction, while, while CCnonQE is divided in 2 samples : CC1Pi+ & CCOther

a Pi+ is identified with a specific PID, in 3 different ways :

1-FGD1+TPC2 track consistent with a Pion

2-A FGD contained track consistent with a Pion

3-With a Michel electron arising from late Pi=>Mu (electron + timing shift)

Interest of this division in 3 samples : better constraint on flux & Xsections than previous 2 samples (CCQE and CcnonQE)

Constraints on flux from ND280

10

 E_{v} (GeV)

10

 E_{v} (GeV)

Muon momentum (MeV/c)

SK uncertainty reduction

sin²20₁₃=0.1

sin²20₁₃=0.0

	v _e Prediction (Events)	Error from Constrained Parameters	v _e Prediction (Events)	Error from Constrained Parameters
No ND280 Constraint	22.6	26.5%	5.3	22.0%
ND280 Constraint (2012, Runs 1-3)	21.6	4.7%*	5.1	6.1%*
ND280 Constraint (this analysis)	20.4	3.0%	4.6	4.9%

ND280 Analysis	ND280 Data	SK Selection	sin²20 ₁₃ =0.1	sin ² 20 ₁₃ =0.0	
No Constraint		Old	22.6%	18.3%	
No Constraint		New	26.9%	22.2%	Faster 2.4 mars
2012 method*	Runs 1-2	Old	5.7%	8.7%	ND280 POT
2012 method**	Runs 1-3	Old	5.0%	8.5% 🗲	Improved SK π^0
2012 method	Runs 1-3	New	4.9%	6.5% 🤛	
2012 method***	Runs 1-3	New	4.7%	6.1%	reconstruction,
2013 method	Runs 1-3	New	3.5%	5.2%	selection, binning
2013 method	Runs 1-4	New	3.0%	4.9% 🥪	Factor 2.2 more ND280 POT

*Results presented at Neutrino 2012 conference **Published results, arXiv:1304.0841v2 ***Update to NEUT tuning with MiniBooNE data

Systematic limited

Solutions:

A) More optimized binning and selection of the data to better constrain the marginalized cross section uncertainties

B) Improved understanding of the detector response and reconstruction to reduce the uncertainty

1 ring

Based on the Hough transformation to find the ring

e-like

mass => fuzzy ring

Decay Electrons

Search for a peak in the charge/time distribution after the main event :

Reconstructed Neutrino Energy

On this plot, this cut seem strange. Its existence is explained by really high systematic errors on high energy electron neutrino events. Therefore, it is wiser to remove those hits to remove also few intrinsic nuE that dominates at high energy

π^0 Mass

- A new reconstruction algorithm has been developped at SK
- Improved PID and more specifically, better π^0 fitter
- In this study, only used for the π^0 mass cut

This fit can be optimized but become highly model sensitive

The fiTQun algorithm

fiTQun:A New Event

Reconstruction Algorithm for Super-K

- For each Super-K event we have, for every hit PMT
 - A measured charge
 - A measured time
- For a given event topology hypothesis, it is possible to produce a change and time PDF for each PMT
 - Based on the likelihood model used by MiniBooNE (NIM A608, 206 (2009))
- Framework can handle any number of reconstructed tracks
 - Same fit machinery used for all event topologies (e.g. e^{-} and π^{0})
- Event hypotheses are distinguished by **comparing best-fit likelihoods**
 - electron vs muon
 - electron vs π^0
 - I-ring vs 2-ring vs 3-ring ...

The fiTQun algorithm

- Previous T2K v_e appearance cut: $m_{\pi 0} < 105 \text{ MeV/c}^2$
- The π⁰ mass tail is much smaller for fiTQun
 - Significant spike at zero mass in standard fitting algorithm (POLFit)
- Lower plot:

 π^0 rejection efficiency vs lower photon energy

 fiTQun is more sensitive to lower energy photons

Cuts Summary

	MC Expectations w/ sin ² 20 ₁₃ =0.0					
RUN1+2+3+4 6.393x10 ²⁰ POT	v _µ +antiv _µ CC	v _e +antiv _e CC	NC	BG total	Signal	Data
Interactions in FV	308.01	15.48	271.56	595.05	0.53	•
FCFV	234.76	14.88	76.46	326.1	0.51	363
Single-ring	134.95	9.58	21.6	166.13	0.46	186
Electron-like PID	5.32	9.51	14.87	29.71	0.45	58
E _{vis} >100MeV	3.46	9.45	12.67	25.58	0.44	55
No decay-e	0.65	7.71	10.64	19	0.41	43
POLfit mass	0.19	5.47	2.99	8.64	0.39	34
E _v rec<1250MeV	0.12	3.45	2.3	5.87	0.39	31
Efficiency [%]	0.04	22.3	0.8	1	73.6	

	MC Expectations w/ sin ² 20 ₁₃ =0.1					
RUN1+2+3+4 6.393x10 ²⁰ POT	v _µ +antiv _µ CC	v _e +antiv _e CC	NC	BG total	Signal	Data
Interactions in FV	307.67	14.96	271.56	594.19	25.59	
FCFV	238.67	14.38	76.46	325.26	24.78	363
Single-ring	134.76	9.19	21.6	165.55	21.5	186
Electron-like PID	5.32	9.12	14.87	29.31	21.24	58
E _{vis} >100MeV	3.45	9.06	12.67	25.19	20.87	55
No decay-e	0.65	7.37	10.64	18.66	18.61	43
POLfit mass	0.19	5.17	2.99	8.35	17.32	34
E _v ^{rec} <1250MeV	0.12	3.2	2.3	5.62	16.77	31
Efficiency [%]	0.04	21.4	0.8	0.9	65.5	

Improvement from 2012 & Systematic error for each sample

Predicted number of events and systematic uncertainties

Predicted # of events w/ 6.4×10^{20}						
POvent category	$sin^{2}2\theta_{13}=0.0$	$sin^{2}2\theta_{13}=0.1$				
$v_e signal v_e background v_\mu background (mainly NC\pi^0) v_\mu + v_e background (mainly NC\pi^0) Total$	0.38 3.17 0.89 0.20	16.42 2.93 0.89 0.19				
Total (m/ 2012 flum & areas	4.64	20.44				
section parameters)	5.15	21.77				

Near detector fit in 2013 predicts smaller number of events compared to 2012.

Systematic uncertainties

Error source	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux + v int. in T2K fit	4.9 %	3.0 %
Far detector	6.7 %	7.5 %
(+FSI+SI+PN)	7.3 %	3.5 %
Total Total (2012)	11.1 %	8.8 %
Total (2012)	13.0 %	9.9 %
	13.0 %	9.97

Still statistically limitated (stat. Error = 18.9 %)

Appearance Formula

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \boxed{4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}} \\ +8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ -8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ +4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21} \\ -8c_{13}^{2}s_{12}^{2}s_{23}^{2}\frac{aL}{4E}(1 - 2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} \\ +8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2})\sin^{2}\Delta_{31} \end{aligned}$$

Leading order :

• Sensitive theta13 & theta23

Higher orders :

- Dependence on solar parameters also
- Sensitivity to CP violation & matter effects

Matter Effects & CP violation term

 $P(\nu_{\mu} \to \nu_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}$

 $+8c_{13}^2s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta-s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$

 $-8c_{13}^2c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$

 $\begin{aligned} &+4s_{12}^2c_{13}^2(c_{12}^2c_{23}^2+s_{12}^2s_{23}^2s_{13}^2-2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^2\Delta_{21}\\ &-8c_{13}^2s_{12}^2s_{23}^2\frac{aL}{4E}(1-2s_{13}^2)\cos\Delta_{32}\sin\Delta_{31}\\ &+8c_{13}^2s_{13}^2s_{23}^2\frac{a}{\Delta m_{31}^2}(1-2s_{13}^2)\sin^2\Delta_{31}\end{aligned}$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \qquad a \to -a \qquad \delta \to -\delta$$

Observation of v_{β} appearance

 $6.6 \cdot 10^{20}$

Off-Axis

- Fix all parameters except θ_{13} , do not take into account error on osc. param
 - $\theta_{_{23}}$ set to $\pi/4$
 - δ_{cD} set to 0
 - $|\Delta m^2_{32}| = 2.4.10^{-3} \text{ eV}^2$, and then fit for normal and inverted hierarchy
- **<u>2 studies :</u>** (Angle, Momentum) of the electron & one in E_{n}^{rec}

For the (p, θ) study :

- Rate and shape analysis => $sin^2(2\theta_{13})$ for normal and inverted hierarchies
- We deduce significance comparing Likelihood value between θ_{13} best fit value & $\theta_{13} = 0$

The δ_{cp} Fit

From T2K results, a maximal $\delta_{_{\rm CD}}$ violation is favoured

SKv_{μ} selection

Remove intrinsic & oscillated electron Neutrino

Remove NC events (Tau Neutrinos)

1 Ring Muon like

Ring Counting

μ Like

µ momentum

Decay electron

The v_{\parallel} disappearance

- Presented at last GDR => no update on the analysis method but...
 Accepted for PRL publication
- Fix all parameters to PDG values except $\theta_{_{23}}$ and $| {\scriptstyle \Delta m^2_{_{32}}}|$:

Best Fit Value for both Octants $\sin^2(2\theta_{23}) = 1.000$

Favours Maximal Mixing No Octant sensitivity for now

The v_{\parallel} disappearance

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^{2}(\theta_{13})\sin^{2}(\theta_{23})[1 - \cos^{2}(\theta_{13}) \\ \times \sin^{2}(\theta_{23})]\sin^{2}(1.27\Delta m_{32}^{2}L/E_{\nu}),$$

Source of uncertainty (no. of parameters)	$\delta n_{\rm SK}^{\rm exp} / n_{\rm SK}^{\rm exp}$
ND280-independent cross section (11)	6.3%
Flux & ND280-common cross section (23)	4.2%
Super-Kamiokande detector systematics (8)	10.1%
Final-state and secondary interactions (6)	3.5%
Total (48)	13.1%

 $58 \ events$: stat uncertainty on norm is 7.6 %

=> syst dominated in this channel

The v_{μ} disappearance

10/12

Presented at last GDR : <u>Accepted for PRL publication</u>

Mass hierarchy dependence

- Low sensitivity to mass hierarchy
- With reactor constraints, dependence on Mass hierarchy exist but is not huge : but without mass hierarchy not even 2 Sigma on non 0 CP violation

Future sensitivity & Nova common fit

- Regions where sin $\delta \neq 0$ can be determined to 90% CL for normal hierarchy
- Gray regions: T2K+NOvA combined fit
- Curves: T2K alone, NOvA alone

Beam time in Neutrino/Anti: Now studied by a dedicated task force

Mass Hierarchy sensitivity & Nova common fit

90% CL Mass Hierarchy Resolution

- Regions where the mass hierarchy can be determined to 90% CL for normal hierarchy
- Gray regions: T2K+NOvA combined fit
- Curves: T2K alone, NOvA alone

T2K alone could not solve the mass hierarchy problem

CP dependence on Mass Hierarchy sensitivity

90% CL Mass Hierarchy Resolution

- ► $\Delta \chi^2$ vs δ_{CP} for mass hierarchy determination
- $\sin^2(\theta_{23}) = 0.5$
- Curves: T2K alone, NOvA alone, T2K+NOvA combined fit

T2K: 100% ν NOvA: 50% ν, 50% ν

T2K: 50% ν, 50% ν̄ NOvA: 50% ν, 50% ν̄

Disappearance Formula

In limits : $|\Delta m_{32}^2| >> |\Delta m_{21}^2|$:

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - [\cos^{4}(\theta_{13}) \sin^{2}(2\theta_{23}) + \sin^{2}(\theta_{23}) \\ \times \sin^{2}(2\theta_{13})] \sin^{2}(\Delta m_{32}^{2}L/4E_{\nu}),$$

Θ_{23} Sensitivity prediction

Maximal mixing sensitivity

Octant sensitivity

Ultimate T2K 90% C.L. Regions for True $\sin^2 \theta_{23} = 0.4, \ \Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

Solid: no sys. err., Dashed: with current sys. err. True MH is NH; contours drawn for two MH assumptions

T2K $\Delta m_{32}^2 \ 1\sigma$ Precision vs. POT

Solid: no sys. err., Dashed: with current sys. err.

 $|\Delta m^2_{32}|$ sensitivity

 $\begin{array}{l} \mbox{Assuming true:} \\ \sin^2 2\theta_{13} = 0.1, \ \sin^2 \theta_{23} = 0.5, \ \Delta m^2_{32} = 2.4 \times 10^{-3} \ {\rm eV^2} \\ \theta_{13} \ {\rm constrained \ by \ the \ ultimate \ reactor \ sensitivity} \end{array}$