Review of Recent (but not exhaustive) Double Beta Decay Results

GDR Neutrino IPNL, Lyon

Mathieu BONGRAND

CNRS/IN2P3 - Université Paris Sud - LAL Orsay

November, 2013

Majorana Neutrinos and Double Beta Decay

Introduction Current Results Next Generation Experiments

Recent Results or Progress

Germanium Diodes Bolometers Xe TPC Liquid Scintillators Tracko-Calo

Majorana Neutrinos and Double Beta Decay

Introduction Current Results Next Generation Experiments

Recent Results or Progress

Germanium Diodes Bolometers Xe TPC Liquid Scintillators Tracko-Calo

Majorana Neutrinos

- > The neutrino is the only fundamental fermion without electric charge
 - instead of being a Dirac particle like the other Standard Model fermions it could be a Majorana particle

P. Dirac: $\nu \neq \bar{\nu}$

E. Majorana: $\nu \equiv \bar{\nu}$

- The Majorana nature of the neutrino could lead to:
 - Lepton Number Violation
 - Small masses of the neutrinos through the See-Saw mechanism
 - Baryon asymmetry in the Universe through Leptogenesis
- The most sensitive experimental way to search for Majorana nature of the neutrinos it the neutrinoless double beta decay (0ν2β)

Two Neutrinos Double Beta Decay $(2\nu 2\beta)$

Second order of the weak interaction occurring when β -decay is forbidden for few nuclei: $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e$

$$\mathcal{T}_{1/2}^{2
u} \in [7 \,\, 10^{18} - 3 \,\, 10^{24}]$$
 y

Neutrinoless Double Beta Decay $(0\nu 2\beta)$

If the neutrinos are Majorana particles the Lepton Number Violating ($\Delta L=2$) decay could occur: $(A,Z) \rightarrow (A,Z+2) + 2e^-$

- Majorana neutrino exchange m_{ββ}
- Right Handed Current
- Majoron
- SUSY

$$\mathcal{T}_{1/2}^{0
u})^{-1} = G_{0
u} \, |\mathcal{M}_{0
u}|^2 \, |m_{etaeta}|^2$$

 $\mathcal{T}_{1/2}^{0
u} > 10^{24} - 10^{25} \; {
m y}$

Isotopes and Nuclear Matrix Elements

2β	$Q_{\beta\beta}$ [MeV]	$G_{0\nu} \ [10^{-14} \ { m y}^{-1}]$	$\mathcal{T}_{1/2}^{2 u}$ [y]	NA [%]
48 Ca	4.274	6.35	4.3 10 ¹⁹	0.187
76 Ge	2.039	0.62	$1.3 \ 10^{21}$	7.61
82 Se	2.996	2.70	9.2 10 ¹⁹	8.73
96 Zr	3.348	5.63	2.0 10 ¹⁹	2.8
100 Mo	3.035	4.36	$7.0 \ 10^{18}$	9.63
116 Cd	2.805	4.62	$3.0 \ 10^{19}$	7.49
130 Te	2.530	4.09	$6.1 \ 10^{20}$	34.1
^{136}Xe	2.462	4.31	$2.1 \ 10^{21}$	8.9
150 Nd	3.368	19.2	7.9 10 ¹⁸	5.6

$$(\mathcal{T}_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 |m_{\beta\beta}|^2$$
$$\mathcal{T}_{1/2}^{0\nu} > k \; \frac{\mathcal{N}_A}{A} \; \mathcal{E}_{0\nu} \; \sqrt{\frac{M \; t}{B \; \Delta E}}$$

Necessary life-time sensitivity reach to start testing the inverted hierarchy $|m_{\beta\beta}|\sim 50~{\rm meV}$

Dueck et al., Phys. Rev. D 83 (2011)

Effective Neutrino Mass for Double Beta Decay

The effective neutrino mass for double beta decay is related to the neutrino mixing parameters:

Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013

A. Merle and W. Rodejohann, Phys.Rev.D73:073012,2006

Current Best Limits on the $0\nu 2\beta$ Search

Isotone	Experiment	Technique	Mass	$\mathcal{E}_{0\nu}$	Bkg	$\mathcal{T}_{1/2}^{0 u}$ (90%)	$ m_{etaeta} $
isotope	Experiment	reeninque	101035	[%]	$[fwhm \cdot kg \cdot y]^{-1}$	́[y]	[eV]
48 Ca	CANDLES	Scintillation	0.01 kg	${\sim}90$	-	$>5.8 \ 10^{22}$	3.55 - 9.91
76 Ge	GERDA 1	Ionisation	18 kg	$\sim \! 90$	0.05	$> 2.1 \ 10^{25}$	0.20 - 0.50
82 Se	NEMO-3	Tracko-calo	930 g	${\sim}10$	0.3	$> 3.2 \ 10^{23}$	0.85 - 2.08
96 Zr	NEMO-3	Tracko-calo	9.43 g	${\sim}20$	0.2	$> 9.2 \ 10^{21}$	3.97 - 14.4
100 Mo	NEMO-3	Tracko-calo	6.9 kg	${\sim}10$	0.5	$> 1.1 \ 10^{24}$	0.30 - 0.80
^{116}Cd	Solotvina	Scintillation	80 g	$\sim\!90$	-	$> 1.7 \ 10^{23}$	1.22 - 2.30
130 Te	CUORICINO	Bolometer	10 kg	$\sim \! 90$	1.1	$>2.8 \ 10^{24}$	0.27 - 0.57
^{136}Xe	EXO-200	Liquid TPC	${\sim}90~{\rm kg}$	${\sim}40$	0.025	$> 1.6 \ 10^{25}$	0.14 - 0.36
^{136}Xe	KamLAND-Zen	Liq. Scint.	125 kg	${\sim}50$	$^{110m} Ag$	$> 1.9 \ 10^{25}$	0.13 - 0.33
^{150}Nd	NEMO-3	Tracko-calo	36.5 g	${\sim}10$	0.5	$> 1.8 \ 10^{22}$	2.35 - 8.65

Xavier Sarazin - HDR

NME from Dueck et al., Phys. Rev. D 83 (2011)

Current Best Limits on the $0\nu 2\beta$ Search

Xavier Sarazin - HDR

Next Generation Experiments (not exhaustive)

	Experiments	lsotope	Technique	Advantages
	GERDA - Majorana	76 Ge	Ge diodes	$\mathcal{E}_{0 u}$ - ΔE - PSD
	CUORE	130 Te		
≥	LUCIFER	82 Se	Bolometers	$\mathcal{E}_{0 u}$ - ΔE - (PID)
acking Calorimetu	LUMINEU - AMoRE	^{100}Mo		
	EXO-200 - nEXO	^{136}Xe	Liquid TPC	mass - PID
	CANDLES	^{48}Ca		48 Ca - $\mathcal{E}_{0 u}$ - mass
	SNO+	130 Te	Scintillation	$\mathcal{E}_{0 u}$ - mass
	KamLAND-Zen	^{136}Xe		- existing
	SuperNEMO	⁸² Se	Tracko-calo	bkg - full topology
		$(^{150}$ Nd - 48 Ca)	Паско-саю	- multi isotopes
	NEXT - EXO-gas	^{136}Xe	Gas TPC	$\mathcal{E}_{0 u}$ - tracking - ΔE
E.	COBRA	116 Cd	Pixels	$\mathcal{E}_{0 u}$ - tracking

Adapted from Fabrice Piquemal

Majorana Neutrinos and Double Beta Decay

Introduction Current Results Next Generation Experiments

Recent Results or Progress

Germanium Diodes Bolometers Xe TPC Liquid Scintillators Tracko-Calo

GERDA

Bare Ge diodes in liquid argon

- \blacktriangleright enriched in $^{76}{\rm Ge}$ at 86 %
- gradual deployment of the detector strings in the 64 m³ cryostat
- LNGS 3800 m.w.e.

Phase 1 - 2011-2013:

- ho \sim 18 kg of $^{76}{
 m Ge}$
- 8 old semi-coaxials (HdM -IGEX) 17.7 kg
- ► 5 new BEGe 3.6 kg
- FWHM @ Q_{ββ}: 4.2 5.7 keV coaxials and 2.6 - 4.0 keV BEGe

plastic µ-veto

Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013

GERDA Phase 1 Results

arXiv:1307.4720

GERDA Phase 2

\sim 50 kg of $^{76}{\rm Ge}$

Factor 10 reduction of the background \rightarrow 10⁻³ [keV·kg·y]⁻¹ $\mathcal{T}_{1/2}^{0\nu} > 1 \ 10^{26} \text{ in 100 kg·y exposure}$

 \blacktriangleright 30 new BEGe diodes \sim 20 kg already produced and characterized

- better PSD than coaxials
- ▶ PSD single site $(0\nu 2\beta)$ / multi sites $(\gamma$ -rays) or surface $({}^{42}K)$
- FWHM \sim 3 keV @ $Q_{\beta\beta}$
- Detect liquid argon scintillation light to veto backgrounds
 - PMT on top and bottom of Ge diode strings
 - SiPM with fiber curtain
- Estimate if extrapolation to higher masses is possible

From CUORICINO to CUORE

 $\begin{array}{l} \mbox{CUORICINO @ LNGS 2003-2008:}\\ 62\ \mbox{TeO}_2\ \mbox{crystals}\\ 11.2\ \mbox{kg of }^{130}\mbox{Te}\\ \mbox{FWHM} = 6.3 \pm 2.5\ \mbox{keV @ }Q_{\beta\beta}\\ \mbox{Background } 0.15\ \mbox{[keV-kg-y]}^{-1} \end{array}$

CUORE-0 running since few months to test the α background reduction for CUORE

- ▶ 206 kg of ¹³⁰Te
- Improved bolometers assembly and cleaning techniques
- Improved cryostat radiopurity
- Background target 0.01 [keV·kg·y]⁻¹
- FWHM \sim 5 keV @ Q_{etaeta}
- Sensitivity: $\mathcal{T}_{1/2}^{0\nu} > 1 \ 10^{26} \ \mathrm{y}$ in 5 years
- First tower already assembled and 18 others by 2014

CUORE-0

- ▶ 11 kg of ¹³⁰Te
- CUORICINO cryostat \rightarrow same γ background
- Bolometers assembly and cleaning techniques improved for radiopurity
- Improved crystals supports $\rightarrow \alpha$ background reduction Blind analysis: exchange ²⁰⁸Tl events and $0\nu 2\beta$ region events

LUCIFER

- $\blacktriangleright~\sim$ 50 ZnSe crystals $\rightarrow \sim$ 18 kg of $^{82}{\rm Se}$
- CUORICINO cryostat after CUORE-0
- $\mathcal{T}_{1/2}^{0
 u} > {\sim} 10^{26}$ y in 5 years
- Background measurement ongoing with Zn^{nat}Se in LNGS
- ▶ Target 10⁻³ [keV·kg·y]⁻¹
- Troubles in reproducibility during the production of ZnSe crystals

Inverted α quenching!

LUMINEU

- 4 ZnMoO₄ crystals $\rightarrow \sim 0.7$ kg of ¹⁰⁰Mo
- Edelweiss cryostat @ LSM mid 2014
- Sensitivity $\mathcal{T}_{1/2}^{0\nu} > 1 \ 10^{24}$ y in 1 year
- Background and PSD measurements with 300 g Zn^{nat}MoO₄ in CUORE R&D cryostat
- ▶ 4 new 200 g Zn^{nat}MoO₄ crystals built
- \triangleright 2 $\nu 2\beta$ pile-up limiting bkg for 100 kg

 $\beta/\gamma - \alpha$ PSD with light

 $\beta/\gamma - \alpha$ PSD with heat signal only

EXO-200

- Easy and cheap ¹³⁶Xe enrichment (80 %)
- 200 kg liquid xenon TPC in WIPP USA
- Active mass 79.4 kg of ¹³⁶Xe
- FWHM 3.8 % @ $Q_{\beta\beta}$
- ► First results in 121 days for 32.5 kg·y exposure
- \blacktriangleright ~ 50 % bkg from radon \rightarrow reduced for next runs $\mathcal{T}_{1/2}^{0\nu}(^{136}\text{Xe}) > 1.6 \ 10^{25} \text{ y}$

nEXO

- "As similar to EXO-200 as possible"
- Liquid Xenon TPC in SNOLAB Cryopit
- \blacktriangleright 5 t enriched at 90 % in $^{136}{\rm Xe}$
- Baseline FWHM 3.5 % @ $Q_{\beta\beta}$
- Scaling EXO-200 bkg and improved discrimination
- Sensitivity: $\mathcal{T}_{1/2}^{0\nu}(^{136}\text{Xe}) > 4.1 \ 10^{27}$ y in 10 years
- With barium tagging: ${\cal T}_{1/2}^{0
 u}(^{136}{\rm Xe})>2.1\;10^{28}\;{\rm y}$

KamLAND-Zen

- 13 tons of Xe-loaded liquid scintillator in KamLAND mini balloon
- 320 kg of enriched ¹³⁶Xe at 90%
- FWHM \sim 10 % @ Q_{etaeta}
- Exposure 89.5 kg·y 2011-2012
- Fukushima fallout ^{110m}Ag bkg
- LS and Xe extracted and purified
- Restart data taking 11/2013

 $\mathcal{T}_{1/2}^{2\nu}(^{136}\mathrm{Xe}) = 2.30 \pm 0.02 \; \text{(stat)} \pm 0.12 \; \text{(syst)} \; 10^{21} \; \text{y} \qquad \mathcal{T}_{1/2}^{0\nu}(^{136}\mathrm{Xe}) > 1.9 \; 10^{25} \; \text{y}$

SNO+

NEMO-3: the Neutrino Ettore Majorana Observatory

- Located in the Laboratoire Souterrain de Modane (LSM) in France under 4800 m.w.e.
- Shielded by 30 cm of borated water or wood, 19 cm of pure iron and radon-free air tent (2004)

Feb. 2003 - Oct. 2004 $\mathcal{A}_{int}(^{222}\text{Rn}) \sim 30 \text{ mBq/m}^3$

 $\begin{array}{l} \mbox{Phase 2} \\ \mbox{Dec. 2004 - Jan. 2011} \\ \mathcal{A}_{int}(^{222}\mbox{Rn}) \sim 5\mbox{ mBq/m}^3 \end{array}$

NEMO-3 Detector

 NEMO-3 unique tracking and calorimetric double beta decay experiment with 10 kg of sources

SOUFCES 60 mg/cm² foils 10 kg of ββ isotopes

tracker 6180 Geiger cells vertex resolution : $\sigma_t = 5 \text{ mm } \sigma_z = 1 \text{ cm}$

 $\begin{array}{c} \textbf{calorimeter} \\ 1940 \ counters: \\ polystyren \ scintillator \\ + \ 3" \ and \ 5" \ PMTs \\ FWHM_E = 15\% \ / \ \sqrt{E_{MeV}} \\ \sigma_T = 250 \ ps \end{array}$

NEMO-3 Unique Features

- Unique 2β experiment with the direct reconstruction of the $2e^ \rightarrow$ full signature of $0\nu 2\beta$ events and powerful background rejection
- Individual electron energies (E₁, E₂), time of arrival (t₁, t₂), curvature in magnetic field (±), emission vertex and angle (cos θ)
- Modest energy resolution and efficiency
- \blacktriangleright Background for $0\nu 2\beta$ equivalent to the best calorimeter experiments

NEMO-3 Sources

 NEMO-3 technique allows to study most of the double beta decay isotopes

NEMO-3 $0\nu 2\beta$ Mass Mechanism Search with ¹⁰⁰Mo

► Total ¹⁰⁰Mo exposure of 34.7 kg·y gave no event excess: $\mathcal{T}_{1/2}^{0\nu} > 1.1 \ 10^{24}$ y (90 % CL) corresponding to $|m_{\beta\beta}| < 0.3 - 0.8 \text{ eV}^*$

[Including systematics]

Expected background in [2.8 – 3.2] MeV
$2\nu 2\beta$	8.45 ± 0.05
²¹⁴ Bi from radon	5.2 ± 0.5
External	< 0.2
²¹⁴ Bi internal	1.0 ± 0.1
²⁰⁸ TI internal	3.3 ± 0.3
Total	$\textbf{18.0} \pm \textbf{0.6}$
Data	15

cos(Θ)

* NME: M. Kortelainen et al., Phys. Rev. C 76 (2007) 024315 F. Šimkovic et al, Phys. Rev. C 87 (2013) 045501 J. Barea et al., Phys. Rev. C 79 (2009) 044301 P. K. Rath et al., Phys. Rev. C 82 (2010) 064310 NEMO-3 Other $0\nu 2\beta$ LNV Processes Search

 $(\mathcal{T}_{1/2}^{0
u})^{-1} = G_{0
u} |\mathcal{M}_{0
u}|^2 \chi^2 \quad \text{where} \quad \chi = |m_{\beta\beta}|, \; \langle \lambda \rangle, \; \langle \eta \rangle, \; \langle g_M \rangle$

▶ Upper limits at 90 % CL set on the search for other 0ν2β Lepton Number Violating processes with ¹⁰⁰Mo in units of 10²⁴ y:

	Only	Including		Physics
$0\nu 2\beta$ Process	Statistical	Systematics	Expected	Parameters*
Mass mechanism $ m_{\beta\beta} $	1.1	1.1	1.0	0.3 - 0.8 eV
Right-handed current $\langle \lambda angle$	0.7	0.6	0.5	$1 \ 10^{-6}$
Right-handed current $\langle \eta angle$	1.0	1.0	0.9	0.8 10 ⁻⁸
Majoron emission $\langle g_M angle$	0.05	0.04	0.04	2 - 5 10 ⁻⁵

[To be submitted to Phys. Rev. Lett. Nov 2013]

MME: Mass mechanism on previous slide - J. Suhonen, Nucl. Phys. A700 (2002) 649 - P. K. Rath et al., arXiv:1308.0460
 F. Šimkovic et al, Phys. Rev. C 60 (1999) 055502

NEMO-3 Very Low Background Experiment

• At high energy we can test the backgrounds for the $0\nu 2\beta$ search

[To be submitted to Phys. Rev. Lett. Nov 2013]

- ▶ No events in ¹⁰⁰Mo after 34.7 kg·y exposure above 3.2 MeV
- No events in copper and natural tellurium samples after 13.5 kg·y exposure above 3.1 MeV
- ▶ Background free technique for high energy $Q_{\beta\beta}$ isotopes: ⁴⁸Ca: 4.272 MeV, ¹⁵⁰Nd: 3.368 MeV or ⁹⁶Zr: 3.350 MeV → SuperNEMO

From NEMO-3 to SuperNEMO

	NEMO-3	SuperNEMO
Mass	7 kg	100 kg
lsotopes	100 Mo	⁸² Se
	7 isotopes	150 Nd, 48 Ca
Foil density	60 mg/cm^2	40 mg/cm 2
Energy resolution ($\sigma \mid FWHM$)		
@ 1 MeV	6.3 15 %	3.0 7 %
@ 3 MeV	3.4 8 %	1.7 4 %
Radon in tracker		
$\mathcal{A}(^{222}Rn)$	\sim 5.0 mBq/m 3	\sim 0.15 mBq/m 3
Sources contaminations		
$\mathcal{A}(^{208}$ TI)	\sim 100 μ Bq/kg	$<$ 2 μ Bq/kg
$\mathcal{A}(^{214}Bi)$	60 - 300 $\mu Bq/kg$	$<$ 10 μ Bq/kg
Detector		
tracking cells	6180	20×2034
calo blocks	1940	20×712
Sensitivity (90 % CL)		
$\mathcal{T}_{1/2}^{0 u}$	$> 1.1 \; 10^{24}$ y	$>1\;10^{26}$ y
$ \dot{m_{etaeta}} $	< 0.3 - 0.8 eV	$<$ 40 - 100 $\rm meV$

SuperNEMO demonstrator module with 7 kg of ^{82}Se (53 mg/cm²) is under construction

SuperNEMO Calorimeter Improvement

• Energy resolution of 7 % FWHM at 1 MeV achieved:

- High QE large 8" PMTs (Hamamatsu R5912) directly coupled to the scintillator (no light guide) and improved HV divider
- PVT plastic scintillators (also 8 % achieved for PS)
- Optimization of the scintillator blocks geometry
- Electronics sampling the PMT pulses \sim 2 GS/s (MatAcq/SNFEB)

Reduce the Radon Background

- ▶ Goal: reduce the internal radon background to 0.15 mBq/m³
- Facilities to select detector materials and protections (seals, films...)

Bordeaux emanation tank

Bratislava emanation setup

Prague permeability setup

> Facilities to measure the radon level in the detector or gases

London concentration line

Several electrostatic detectors Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013

Measure the Radiopurity of the SuperNEMO Sources

- HPGe γ spectroscopy not sufficient to reach few μBq/kg today (factor 50 improvement needed for thin foils)
- ► Main contaminations for $0\nu 2\beta$ search (²¹⁴Bi and ²⁰⁸Tl) measured through BiPo processes from natural radioactivity chains:

β and α particles detected by thin radiopure plastic scintillators coupled to light-guides and low radioactivity PMTs:

The BiPo3 Detector

- > 2 modules of 3.0x0.6 m² can measure 1.4 kg of 82 Se foil (40 mg/cm²)
- 2 mm thick aluminized polystyrene scintillators, PMMA light guides and 5" Hamamatsu low radioactivity PMTs
- PMT pulses digitized by MatAcq boards and dedicated trigger board
- Running since 2012 in Canfranc Underground Lab (LSC, Spain)
- Sensitivity: 208 Tl < 2 μ Bq/kg and 214 Bi < 10 μ Bq/kg

Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013

SuperNEMO Demonstrator

SuperNEMO demonstrator module construction started in 2012

 $E = 2.10 \pm 0.05 \text{ MeV}$ $t = 1.93 \pm 0.14 \text{ ns}$

 $E = 0.55 \pm 0.00 \text{ MeV}$

- NEMO-3 sensitivity in only 5 months (90 % CL): $(\mathcal{T}_{1/2}^{0\nu} > 1.1 \ 10^{24} \text{ y} \rightarrow |m_{\beta\beta}| < 0.3 - 0.8 \text{ eV})$
- No background in the $0\nu 2\beta$ region in 2.5 years for 7 kg of 82Se
- Sensitivity after 17.5 kg·y exposure (90 % CL): $\mathcal{T}_{1/2}^{0\nu} > 6.5 \ 10^{24} \text{ y} \rightarrow |m_{\beta\beta}| < 200 - 400 \text{ meV}$
- Commissioning in the actual LSM expected end of 2014

SuperNEMO Demonstrator Construction Status

Scintillators under production and 8" Hamamatsu PMTs in 02/2014

- FE digitizer boards OK, control and trigger boards under development
- Blocks, wall designs and mechanical tests $OK \rightarrow construction starting!$

 $256 \times 256 \times 194 \text{ mm}^3$

Tracker

Calorimeter

- Automated drift cells production ongoing with the wiring robot First 1/4 tracker C0 under radon emanation test before cells population
- C0 commissioning: sea-level end of 2013 and underground in 2014

- Already 5.5 kg of enriched ⁸²Se with 0.5 kg purified
- ources Source materials (glue, films...) under HPGe and BiPo selection processes
- Calibration sources deployment system prototype under test

Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013

Summary

Experiment	Phase	hase Isotope	Exposure	FWHM @	Bkg	$\mathcal{T}_{1/2}^{0 u}$ [y]	$ m_{etaeta} $
Experiment	i nase		[kg·y]	$Q_{\beta\beta} {\rm [keV]}$	$[\text{keV} \cdot \text{kg} \cdot \text{y}]^{-1}$	(90 [′] % CL)	[eV]
CERDA	Phase 1	76 Ce	21.6	2.6-5.7	10^{-2}	$2.1 \ 10^{25}$	0.2 - 0.5
GERDA	Phase 2	Ge	$\sim \! 100$	3	10^{-3}	$1 \ 10^{26}$	0.04 - 0.1
CUOPE	CUORE-0	130 T o	2.2	5	0.074/0.019	-	-
COOKE	CUORE	Te	1000	5	0.01	$1 \ 10^{26}$	0.045 - 0.095
LUCIFER	-	82 Se	90	5 (13)	10^{-3}	${\sim}10^{26}$	0.05 - 0.12
	4 crystals	$^{100}{ m Mo}$	0.7	5	10^{-3}	$1 \ 10^{24}$	0.3 - 0.8
LOWINED	1 tower		35	5 10	7 10 ²⁵	0.04 - 0.10	
EXO	EXO-200	136 Xo	32.5	100	10^{-3}	$1.6 \ 10^{25}$	0.14 - 0.38
	nEXO	Xe	$45 10^3$	90	$2 \ 10^{-5}$	$4.1 \ 10^{27}$	0.005 - 0.030
KamLAND-Zen	-	^{136}Xe	89.5	250	$^{110m} Ag$	$1.9 \ 10^{25}$	0.12 - 0.25
NEMO-3	-	$^{100}{ m Mo}$	34.7	450	10^{-3}	$1.1 \ 10^{24}$	0.3 - 0.8
SuperNEMO	Demons.	82 5 0	17.5	~ 200	F 10-5	$6.5 \ 10^{24}$	0.2 - 0.4
	20 mod.	Je	500	/~200	5 10	$1 \ 10^{26}$	0.04 - 0.10

Many thanks to X. Sarazin, F. Piquemal & TAUP 2013 Speakers for materials and help

Mathieu BONGRAND - LAL - GDR Neutrino - 11/2013