Reactor Induced Errors in Antineutrino Experiments

<u>A.S. Cucoanes</u>*, P.Novella*, A.Cabrera*, M.Fallot*, A.Onillon*, F.Yermia*

*Subatech Nantes ; *APC Paris

GDR Neutrino - Lyon, Nov.2013

Outline

- A briefly look on neutrino oscillations and reactor antineutrinos
- 013 experiments: Double Chooz, Daya Bay and Reno
- Neutrino Flux from reactors
- Isoflux condition and reactor induced uncertainty
- Simplest case: 1 reactor 2 detectors → Double Chooz phase 1
- 2 reactors / 2 detectors \rightarrow Double Chooz phase 2
- >2 reactors / 2 detectors \rightarrow Reno
- >2 reactors / >2 detectors \rightarrow Daya Bay
- Final comparison between experiments
- Conclusions and outlook

Neutrino Oscillations

There is no known symmetry which would imply that the neutrino mass and flavor eigenstates are the same.

$$|v_i\rangle = \sum_{\alpha} U_{\alpha i} |v_{\alpha}\rangle$$

U – the mixing matrix - describe the coupling of the states (Pontecorvo-Maki-Nakagawa-Sakata)

The probability of finding a given state will change in time \rightarrow the neutrinos will oscillate

Need sizable θ_{13} for the access to δ_{CP} . \rightarrow knowledge on the matter asymmetry of the Universe The precise value of θ_{13} is needed for tuning the δ_{CP} experiments.

Why a O13 Measurement at reactors ?

 $\overline{v_e}$ from fission products (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu): \rightarrow well-understood source. Pure, intense and completely isotropic $\overline{v_e}$ flux.

<E>~3MeV, detection via inverse beta decay in liquid scintillator:

- Space (1m) and time (30µs) correlation between prompt and delayed events \rightarrow powerful background rejection.
- Antineutrino energy can be directly measured: $E_{p} = E_{v} 0.8 MeV$
- No background from other neutrino species.
- Protons abundant in liquid scintillator.
- Low energy threshold (1.8MeV).

How to do a **013** measurement at reactors ?

more precisely ...

$$\mathsf{P}(\overline{\nu}_{e} \to \overline{\nu}_{e}) = 1 - \sin^{2}(2\theta_{13}) \cdot \sin^{2}\left(\frac{1.27 \cdot \Delta m_{31}^{2}[eV^{2}] \cdot L[m]}{E[MeV]}\right)$$

- Flux and spectrum are compared with the no-oscillation hypothesis
- Identical detectors placed at isoflux → total cancellation of the source induced uncertainties

6

Double Chooz Experiment in France

Reno Experiment in South Korea

Daya Bay Experiment in China

⊖13 Measurements → a Global View

Antineutrino Flux from Reactors

Antineutrino Flux Uncertainties

- The uncertainties of the neutrino flux parameters could be either correlated, either uncorrelated either partially correlated between reactors.
- 2 main uncorrelated (or partially correlated) uncertainties in Near/Far setups: thermal power and fission fractions.
- The error associated to the **thermal power** depends on the measurement method used by the electricity company, on the installed sensors and on the calibration and measurement procedures employed.
- The **fission fractions** are determined by dedicated core simulations allowing to compute and reduce the associated systematic errors.

Double Chooz phase1: Phys.Rev.D86 (2012)

Source	Normalization Only	Uncertainty [%]
P_{th}	yes	0.5
$\langle \sigma_f \rangle^{Bugey}$	yes	1.4
$S_k(E)\sigma_{IBD}(E_{\nu}^{true})$) no	0.2
$\langle E_f \rangle$	no	0.2
L_R	yes	< 0.1
$lpha_k^R$	no	0.9
Total		1.8

	Uncorrelated	Correlated
Thermal power	0.5%	_
Fission fraction	0.7%	_
Fission reaction cross section	_	1.9%
Reference energy spectra	_	0.5%
Energy per fission	—	0.2%
Combined	0.9%	2.0%

Daya Bay: Chin.Phys.C37 (2013)

Correlated		Uncorrelated	
Energy/fission	0.2%	Power	0.5%
IBD reaction/fission	3%	Fission fraction	0.6%
		Spent fuel	0.3%
Combined	3%	Combined	0.8%

Isoflux

- "Isoflux from detectors view": The Near and Far detectors "see" the same relative fluxes from all reactors.
- **"Isoflux from reactors view"**: the relative contribution made by a given reactor to the total detected antineutrino flux is the same for all the detectors.

- The Isoflux condition depends on the magnitude of the reactor fluxes and the distances between detectors and reactors.
- At isoflux → total cancellation of the uncertainties related to the generated fluxes.
- If not isoflux → partial cancellation of the uncertainties related to the generated fluxes.

Error Suppression Factor

- No one of the present 013 experiments is at isoflux → partial cancellation of the uncertainties related to the generated fluxes.
- The error suppression factor → the fraction between the relative error on the flux in a near/far measurement or a single detector measurement and the (individual) reactor flux relative uncertainty.
- The error suppression factor depends on the isoflux parameters (reactors power and distances) but also on the correlation between the reactors uncertainties.
- The error suppression factor can be considered as "the distance to the isoflux curve".

Error suppression factor for **Double Chooz phase 1** (2 reactors/1 detector)

Error suppression factor for **Double Chooz phase 2** (2 reactors/2 detector)

16

Double Chooz ph. 2 vs. Double chooz ph.1

Huge improvement for Double Chooz phase 2 w.r.t. Double Chooz phase 1 (~100X for correlated uncertainty)

Error suppression factor for DayaBay and Reno

- The model presented for Daya Bay can be "improved" or "worsened" depending on the power histories of the involved reactors.
- As a cross-check of our model, we have reproduced successfully the value of the suppression factor quoted in F. P. An et al. 2013 Chinese Phys. C 37 (hep-ex/1210.6327) which was a best case. The DB suppression factor thus changes depending on the reactor configurations.

Comparison between experiments

- The differences between experiments decrease if the correlation part is dominant.
- The best suppression factor → Double Chooz phase 2 (simplest setup)

Conclusions and Outlook

- The "isoflux problem" plays an important role on the reactor systematic error remaining a large contribution to the total systematic error of the various experiments.
- We computed analytically the error suppression factors for the present Θ13 experiments and we checked our formalism with dedicated Monte Carlo simulations.
- The error suppression factors depends on the thermal power and isotopic composition of the reactor cores and demand a good evaluation of the uncorrelated/correlated parts of the reactor induced error.
- Outlook: The calculation of the Double Chooz, Reno and Daya Bay cases as a function of the reactor histories
- The understanding the fitting procedure of Daya Bay is not trivial and that is an on-going research topic.