lceCube

the beginning of a new era in neutrino astrophysics.

Markus Ackermann

GDR Neutrino 2013 12.11.2013, IPNL, Lyon

High-energy astrophysics

> Three messengers are available to study the non-thermal universe.

The power of neutrino observations.

> Neutrinos are a diagnostic of hadronic acceleration sites and processes.

The power of neutrino observations.

Neutrinos can escape dense environments:

> High-energy neutrinos from core-collapse SNe. (e.g. Ando & Beacom, 2005)

> Neutrinos from the cores of active galactic nuclei (e.g. Stecker et al., 1991)

 $\Gamma_{\rm annihilation}$

> High-energy neutrinos from dark matter annihilation in the sun.

The neutrino domain: PeV astronomy.

- > Above 100 GeV the **universe** starts to turn **opaque for** γ **-rays**.
- > Only neutrino telescopes can do **PeV/EeV astronomy.**

Neutrino astrophysics.

> Small cross-section of neutrinos requires huge detectors.

- First design of a 1 km³ underwater detector already in 1978
 - DUMAND array off the coast of Hawaii
 - Never built after first test strings failed

> 35 years later we are finally there....

Operating neutrino telescopes: Baikal

- ~ 4km off the shore of Lake Baikal
- > Completed in 1998
- > 192 optical sensors on 8 strings (10⁻⁴ km³ instrumented volume)
- > Upgraded to NT200+ configuration in 2007 (+18 sensors on 3 strings)

Markus Ackermann | 12.11.2013 | Page 7

Operating neutrino telescopes: ANTARES

- > Mediterranean sea, off **Toulon, France**
- > **Operating since 2008** in final configuration
- > 885 PMTs on 12 strings (~10⁻² km³ instrumented volume)

Operating neutrino telescopes: IceCube

Construction of the IceCube observatory.

South Pole Station Building

Detection of high-energy neutrinos.

Track-like event signatures (CC interactions of v_µ)

- Angular resolution: < 1°
- μ travels up to several km --> interactions outside the instrumented volume visible
- **Energy** resolution: dE/dx of the produced μ only.

Shower-like event signatures (CC interactions of v_e, v_τ, NC interactions)

- Angular resolution: > 10°
- only interactions inside / close to the instrumented volume visible
- Energy resolution: up to 15% of neutrino energy.

Backgrounds: Muons from CR air showers.

Muons from CR air showers account for 99.9999% of all events seen by IceCube.

Backgrounds: Atmospheric neutrinos.

- > Most neutrinos seen by neutrino telescopes are of atmospheric origin.
- > Atmospheric-v are produced in **CR air shower interactions**.

Particle physics and astrophysics with IceCube.

Search for astrophysical sources of high-energy neutrinos.

- Galactic and extragalactic sources.
- Transients (Gamma-ray bursts, flares of AGNs, periodic emission from binaries).
- Neutrinos from WIMP annihilation in the sun.

Measurement of the diffuse neutrino flux from the universe

- from unresolved sources
- from the interactions of ultra-high-energy CR.

> Measurement of **neutrino properties** using atmospheric neutrinos

- Measurement of oscillation parameters
- Sensitivity to mass hierarchy with PINGU extension.

NOT covered in this talk: all the other great science with neutrino telescopes.

MeV neutrinos from SN

CR physics

Particle physics and astrophysics with IceCube.

Search for **astrophysical sources** of high-energy **neutrinos**.

- Galactic and extragalactic sources.
- Transients (Gamma-ray bursts, flares of AGNs, periodic emission from binaries).
- Neutrinos from WIMP annihilation in the sun.

- Measurement of the diffuse neutrino flux from the universe
 - from unresolved sources
 - from the interactions of ultra-high-energy CR.

> Measurement of **neutrino properties** using atmospheric neutrinos

- Measurement of oscillation parameters
- Sensitivity to mass hierarchy with PINGU extension.

NOT covered in this talk: all the other great science with neutrino telescopes.

MeV neutrinos from SN

CR physics

Search for individual neutrino sources: IceCube

> 4 years of IceCube data (construction phase + full array)

Search for neutrinos from transients: GRBs

- > GRBs have been proposed as the dominant acceleration site for CRs up to energies > 10²⁰ eV.
- > Accompanying neutrino emission should be visible in km³-sized neutrino telescopes in a wide variety of scenarios.
- > Search for cumulative signal from all observable bursts.

Search for neutrinos from GRBs.

- > 225 GRB at Northern sky
- > 2 years of IceCube construction phase data

ceCube

No significant correlation found between IceCube events and GRBs.

- > 296 GRB at Southern sky
- No ANTARES event in time and direction coincidence (arXiv:1307.0304)

ANTARES

Search for neutrinos from GRBs.

> Specific searches for transient enhance the sensitivity through improving signal/noise.

> Flares of Active Galactic Nuclei:

- Correlation with Fermi light curves
- ToO observation program with IACTs.

> Periodic sources / Binaries:

Phase resolved analysis of neutrino events from periodic sources.

> GeV/TeV neutrinos from **extragalactic SNe**:

Neutrino-triggered follow-up observations with optical telescopes.

> The unexpected:

Search for space/time clustering of neutrino events.

> No significant detection yet in any of these searches.

Particle physics and astrophysics with IceCube.

- > Search for **astrophysical sources** of high-energy **neutrinos**.
 - Galactic and extragalactic sources.
 - Transients (Gamma-ray bursts, flares of AGNs, periodic emission from binaries).
 - Neutrinos from WIMP annihilation in the sun.

Measurement of the diffuse neutrino flux from the universe

- from unresolved sources
- from the interactions of ultra-high-energy CR.

> Measurement of **neutrino properties** using atmospheric neutrinos

- Measurement of oscillation parameters
- Sensitivity to mass hierarchy with PINGU extension.

NOT covered in this talk: all the other great science with neutrino telescopes.

MeV neutrinos from SN

CR physics

Markus Ackermann | 12.11.2013 | Page 22

Search for astrophysical neutrinos.

- > All neutrino sources in the universe contribute to the astrophysical neutrino flux
- > Harder spectrum of astrophysical neutrinos than atmospheric background

Indications from construction phase data.

> Excess events observed in analysis of construction phase data.

> Significance too weak to exclude statistical background fluctuations.

Search for an astrophysical flux: The breakthrough.

> Search for contained and semi-contained events with the full IceCube detector.

- > New strategy to reject CR background (less simulation-dependent).
- > Energy threshold: ~ **30 TeV** deposited energy.

Evidence for an astrophysical neutrino flux.

Spectral and angular distribution.

Distribution of high-energy neutrinos on the sky.

- > 21 shower-like events, 7 track-like events.
- > Dominance of shower-like events expected from astrophysical neutrinos due to flavor ratio of $v_e : v_\mu : v_\tau = 1 : 1 : 1$.

Distribution of high-energy neutrinos on the sky.

- Event distribution compatible with expectations from background + isotropic astrophysical flux.
- > **Publication** accepted by Science.

Markus Ackermann | 17.09./2013 | Page 29 (

Evidence for astrophysical neutrinos.

> After decades of limits: The first ever flux point on the diffuse astrophysical neutrino spectrum.

A global spectral fit to all IceCube data.

> Analysis of 2012/2013 IceCube data (run period from May 2012 - Apr 2013).

- Better constraints on prompt atmospheric neutrino fluxes from below 30 TeV data.
- Search for excess events in through-going tracks with IC-79/IC-86

Another PeV neutrino in pre-scaled 2012/2013 data sample used for analysis development (10% of available data).

Particle physics and astrophysics with IceCube.

- > Search for **astrophysical sources** of high-energy **neutrinos**.
 - Galactic and extragalactic sources.
 - Transients (Gamma-ray bursts, flares of AGNs, periodic emission from binaries).
 - Neutrinos from WIMP annihilation in the sun.

- Measurement of the diffuse neutrino flux from the universe
 - from unresolved sources
 - from the interactions of ultra-high-energy CR.

> Measurement of **neutrino properties** using atmospheric neutrinos

- Measurement of oscillation parameters
- Sensitivity to mass hierarchy with PINGU extension.

NOT covered in this talk: all the other great science with neutrino telescopes.

MeV neutrinos from SN

CR physics

Studies of neutrino properties with IceCube.

- Measurement of Δm₂₃ and sin²(2θ₂₃) using DeepCore sub-detector (~10 GeV threshold).
- For vertical events: v_µ survival probability minimum ~ 25 GeV.

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2(2\theta_{atm})\sin^2(1.27\Delta m_{atm}^2 \frac{L}{E_{\nu}})$$

cosmic ray

with atmosphere

Earth

θ

detector

with air shower

Studies of neutrino properties with IceCube.

> Analysis performed using one year of available full IceCube data.

Markus Ackermann | 17.09./2013 | Page 35

Constraints on oscillation parameters.

- > Promising constraints on oscillation parameters from analysis.
- > Uncertainty band dominated by statistics → Competitive constraints from multiyear dataset.

PINGU.

- > IceCube: 78 Strings
 - 125m string spacing
 - 17m DOM spacing
- > DeepCore: +8 strings
 - 75m string spacing
 - 7m DOM spacing
- > PINGU (baseline design): +40 strings
 - 20m string spacing
 - 5m DOM spacing

IceCube-DeepCore-PINGU top view

 0 MeV	 100 MeV	 GeV	l 10 GeV	 100 GeV	 TeV	 0 TeV		l EeV
			PINGU	DeepCore			IceCube	

Measurement of neutrino mass hierarchy with PINGU.

> Up to 20% differences in v_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

Measurement of neutrino mass hierarchy with PINGU.

- Mass hierarchy is one of the last unknown fundamental properties of the neutrino sector.
- > Need to be **sensitive** to energies down to **5 GeV** for measurement.
- > **PINGU**: > megaton effective volume above a few GeV.

Expected PINGU performance.

- > Expected significance from likelihood analysis of oscillation patterns.
- > Letter-of-Intent prepared in the collaboration.
 - To be released to the public before the end of the year.

Summary.

- > IceCube is the first **gigaton scale** neutrino telescope in operation.
- Neutrino telescopes have improved the sensitivity for observations of astrophysical neutrinos by a factor of 1000 in 13 years.
- > So far **no discovery** of an individual neutrino source.

> IceCube observes the **first strong evidence** for **astrophysical neutrinos**:

- Data incompatible with atmospheric expectations on the $> 4\sigma$ level.
- Compatible with a diffuse & isotropic astrophysical flux (no significant clustering observed).
- Additional studies and data needed to constrain the spectral parameters of this flux.
- Such studies are in an advanced stage with results expected soon.

> IceCube is a unique infrastructure to study neutrino properties.

- Competitive studies of standard oscillation parameters with DeepCore.
- In the future: Mass hierarchy with PINGU.

Sensitivity to sterile neutrinos.

Search for neutrino annihilations in the sun.

- > DM particles get captured by scattering off atoms in the Sun.
- > Annihilation of accumulated WIMPs produces neutrinos.
- In equilibrium: Neutrino flux depends only on scattering cross section.

Markus Ackermann | 12.11.2013 | Page 44

Search for neutrino annihilations in the sun.

- > Mass of sun is dominated by hydrogen atoms.
- > World's best limits on **spin-dependent** scattering **cross-section** from IceCube.

Beyond IceCube.

Increase of core density

Extensions to larger volumes

PINGU

- 20-40 new strings inside the DeepCore volume.
- Energy threshold reduced to 1 GeV. •
- Focus on measurement of neutrino • mass hierarchy.

Measurement of neutrino mass hierarchy with PINGU.

> Up to 20% differences in v_{μ} survival probabilities for various energies and baselines, depending on the neutrino mass hierarchy

Muon neutrino survival probabilities for normal hierarchy.

> Survival properties for neutrinos and anti-neutrinos.

Markus Ackermann | 12.11.2013 | Page 48

Muon neutrino survival probabilities for inverted hierarchy.

- > Survival probabilities switched for neutrinos/anti-neutrinos in inverted hierarchy
- > PINGU cannot distinguish neutrinos from anti-neutrinos
- > ...but rates are not the same.

Measurement of mass hierarchy with PINGU.

- > Need to measure complicated pattern in 2-dim distribution (E, cos(zenith))
- > Good way to visualize signature of mass hierarchy:
 - Distinguishability metric (Akhmedov, Razzaque & Smirnov (arXiv:1205.7071)):

Performance studies for PINGU.

> Currently using DeepCore algorithms for reconstruction.

Systematics studied so far:

- θ₂₃, θ₁₃, Δm²_{atm}, δ_{CP} within world average ±2σ ranges
- Efficiency errors (30%)
- Atmos. v spectral index (±0.05)
- Energy calibration (10% bias)
- Pointing accuracy (10% bias)
- Energy resolution (10% error)
- Angular resolution (10% error)
- Further studies underway now.

Measurement of mass hierarchy with PINGU.

> Good identification of mass hierarchy possible with realistic experimental resolution.

Energy resolution 1 GeV

IceCube detector elements.

IceCube Laboratory DAQ **Online filtering** Transfer Storage

