

$oldsymbol{u}^{\scriptscriptstyle b}$		
^b UNIVERSITÄT BERN		
AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC		

MicroBooNE : testing neutrino anomalies

Igor Kreslo on behalf of MicroBooNE collaboration and AEC, LHEP, Uni-Bern

Liquid Scintillator Neutrino Detector (LSND) anomaly and MiniBooNE observation

Los Alamos 1997: LSND observed excess of $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ with significance of 3.8 σ

• Can be interpreted as neutrino oscillations, but with large Δm^2 "Sterile" neutrinos ??

Fermilab 2009: MiniBooNE (Mini-Booster Neutrino Experiment)

• Excess of $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

Not compatible with 3 mass model. Heavy "sterile" neutrino?

What MiniBooNE actually saw?

Excess of electromagnetic activity in the low energy region

Strongest BG constituents: $\pi^0 \rightarrow \gamma \gamma$ $\Delta \rightarrow N \gamma$

What is the excess due to? Is it photons or electrons?

Hard to distinguish with Cerenkov detector...

Events in MiniBooNE

Need for high-granularity & High-resolution tracking detector !

Time projection chamber with liquified Argon

Liquid argon:

- \rightarrow dense (1.4 g/cm3)
- \rightarrow abundant (1% of the atmosphere)
- \rightarrow ionization yield of 55,000 e/cm for a MIP
- \rightarrow high electron mobility (545 (cm/s)/(V/cm) at 87 K)
- \rightarrow scintillates and is transparent to the light produced
- → liquid at 87K

LAr TPC vs Cerenkov

What MicroBooNE will see?

SIMULATION

→ e+e-

dE/dx (MeV/cm

dE/dx at the first 3 cm of the shower separates electrons from photons

High coordinate resolution helps to distinguish particles from primary/secondary interactions

Electron-selection cut :

Photon-selection cut :

Normalized number of particles

Wrong model for γ and/or π^0 ? New type of neutrino interaction with photon in final state ?

MicroBooNE sensitivity to heavy 4th neutrino

MicroBooNE and neutrino crossection

- Contribution to nuclear interaction model(s)
- Cross sections in ~1 GeV region not well known
- On Argon , not known at all!
- Measurements needed for future detectors

Why MicroBooNE LAR TPC?

- Great coordinate and momentum resolution
- LAR TPC reconstructs proton tracks down to ~20 MeV

MicroBooNE at FNAL BNB

- FNAL Booster 8 GeV protons
- 174 kA horn
- 50 m long decay pipe
- Baseline 470 m

MicroBooNE at FNAL

- 170 tons LAr (~60t fiducial)
- Foam insulated cryo-volume
- 2.5 x 2.3 x 10.4 m³ TPC
- 2.5m charge drift
- U,V,Y wire planes
- Signal pre-amplification in liquid (cold)
- PMT system (32 x 8'')
- Laser calibration system

MicroBooNE at FNAL

Anode wire planes

- 3 wire planes (U,V,Y)
 - Y (3456 wires): vertical, collection
 - U (2400 wires):+60°, ind.
 - V (2400 wires): -60°, ind.
- 3 mm wire pitch

Charge Data Acquisition System

- Beam trigger
- Continuous 1h ring buffer, (Nevis)
- Calibration

Cryogenic charge amplifiers

BNL Electronics Group (Veljko Radeka et al.)

50

60

Time tick (500 ns / tick)

Cryogenic charge amplifiers

BNL Electronics Group (Veliko Radeka et al.)

CMOS Analog Front End ASIC

- 16 channels per chip
- Charge amplifier, 5-order filter
- Adjustable gain: 4.7, 7.8, 14, 25 mV/fC
- Adjustable filter time constant (peaking time): 0.5, 1, 2, 3 µs
- ENC ~ 500e @ Cdet=150 pF
- Selectable collection/induction mode
- Selectable dc/ac (100 µs) coupling
- Rail-to-rail analog signal processing
- Band-gap referenced biasing
- Temperature sensor (~ 3mV/°C)
- 136 registers with digital interface
- 5.5 mW/channel

Designed for long cryo-lifetime

Scintillation readout system

- 32 X 8" PMTs mounted on wire side
- WLS coated screens (128 nm to 420 nm)
- Provide t_o for TPC events
- Help to sort out cosmic pile-up

Laser system for drift field calibration

Ion space charge from cosmic muon flux \rightarrow drift field is not uniform

Cosmic muons are here for free, but... Delta-electrons Coulomb multiple scattering Charge recombination Low statistics

Solution: Laser-produced ionization track !

Laser system for drift field calibration

- 266 nm laser beam
- Ionization by three-photon absorption
- Steered mirror to cover TPC volume

Beam positioning accuracy: 1 mm at 10 m

MicroBooNE at FNAL

- Construction is on schedule
- Field cage is mounted
- Scintillation R/O is complete
- Wire planes are in place
- DAQ is in testing phase
- Beginning of taking data in 2014 !

Meanwile: extensive tests ...

- USA (FNAL, Nevis, BNL, and many others)
- Europe (ARGONTUBE detector in Bern)

ARGONTUBE at LHEP, Bern

Chamber characteristics

- Drift distance: 5 m
- Readout surface: 20 × 20 cm²
- Active volume: 200 l
- Active mass: 280 kg
- Inner volume: 1.1 m³
- Outer volume 1.2 m³
- Number of readout channels: 2 × 64

Setup features and highlights

- Double bath cryostat
- Large aspect ratio of 25
- Few hundred kV required
- Greinacher circuit for HV generation
- Liquid purification system
- Two PMTs are installed above the wire planes
- External triggering system with scintillator planes is installed

	uBooNE Design values	ARGONTUBE Stable conditions
Drift distance [cm]	250	476
Cathode voltage [kV]	- 125	- 100
Drift field [V/cm]	500	~200
Maximum drift time [ms]	1.6	7.2
Electron life time [ms]	> 3	2.5 — 3.0

~ 5 m long electrons drift in LAR: first time!

twice MicroBooNE drift lentgh, < 1/2 E-field

Collection, Run 8197 Event 27. Trigger pattern: I1 T

Collection, Run 8204 Event 43. Trigger pattern: I1 B T

Collection, Run 8257 Event 3. Trigger pattern: I1 T

Collection, Run 8203 Event 33. Trigger pattern: I1 T

Collection, Run 8203 Event 135. Trigger pattern: I1 I2 T

Collection, Run 8200 Event 142. Trigger pattern: I1 I2 T

Collection, Run 8135 Event 74. Trigger pattern: I1 I2 S

Collection, Run 8200 Event 145. Trigger pattern: I1 I2 S

Collection, Run 8202 Event 45. Trigger pattern: I1 I2 B S

27

Cr0000

ne

X, cm

Summary

microboona

Precision era in neutrino physics

Liquid Argon TPCs provide necessary granularity and mass

MicroBooNE will:

explore the MiniBooNE low energy excess (Sterile neutrinos?) provide more information on nuclear models perform neutrino cross section measurements serve as a natural step towards XXXL detectors

TPC is built, optical system installed, readout ready. Installed in the final experimental building this year. Cryogenic system is being built.

Data taking starts 2014.

Backup slides

GDR Neutrino GT4, Lyon, 13.11.2013

Expected event rates for 6.6 x 10 ²⁰ POT		
production mode	# events	
$CC QE (\nu_{\mu} n \rightarrow \mu^{-} p)$	60,161	
NC elastic $(\nu_{\mu} N \rightarrow \nu_{\mu} N)$	19,409	
CC resonant π^+ $(\nu_{\mu} N \rightarrow \mu^- N \pi^+)$	25,149	
CC resonant π^0 $(\nu_\mu n \to \mu^- p \pi^0)$	6,994	
NC resonant π^0 ($\nu_\mu N \to \nu_\mu N \pi^0$)	7,388	
NC resonant $\pi^{\pm} (\nu_{\mu} N \to \nu_{\mu} N' \pi^{\pm})$	4,796	
CC DIS $(\nu_{\mu} N \rightarrow \mu^{-} X, W > 2 \text{ GeV})$	1,229	
NC DIS $(\nu_{\mu} N \rightarrow \nu_{\mu} X, W > 2 \text{ GeV})$	456	
NC coherent π^0 ($\nu_\mu A \to \nu_\mu A \pi^0$)	1,694	
CC coherent π^+ ($\nu_{\mu} A \rightarrow \mu^- A \pi^+$)	2,626	
NC kaon $(\nu_{\mu} N \rightarrow \nu_{\mu} K X)$	39	
CC kaon $(\nu_{\mu} N \rightarrow \mu^{-} K X)$	117	
other ν_{μ}	3,678	
total ν_{μ} CC	98,849	
total ν_{μ} NC+CC	133,580	
$\nu_e \mathrm{QE}$	326	
$\nu_e CC$	657	

	BNB	NuMI
Total Events	145k	60k
ν _μ CCQE	68k	25k
NC πº	8k	3k
ve CCQE	0.4k	1.2k
POT	6x10 ²⁰	8x10 ²⁰

Projected Event Rates for MicroBooNE in 2-3 years.

licroBooNE

Additional physics of MicroBooNE

Supernova neutrino

- Low energy electron reconstruction

Proton decay backgrounds

– Study Kaon decays as background to "golden" channel $p \rightarrow K^+ v$

