

V. Van Elewyck (APC & Université Paris diderot)

GDR Neutrino Plenary Meeting, Lyon 13/11/2013

Reminder on the motivations

a^{1€} 2.5

∼ອິ-2.5

2 NH

180

[10⁻³ eV²]

✓ All neutrino mixing parameters known (with fair precision)

- neutrino mass hierarchy (NMH)

 \checkmark θ_{13} is « large » !

13,

\diamond Next steps: - δ_{CP} phase

prospects for long-baseline and atmospheric neutrino experiments !

Reminder on the motivations

Main target: muon neutrino disappearance (CC channel: muon tagging)

...need matter effects AND difference in cross-sections (& fluxes) for v and \overline{v} !

Reminder on the motivations

differences in (E_v, θ_v) oscillograms make it possible to identify NMH in underwater/ice Cherenkov detectors

Example with PINGU-like detector: (perfect resolution, large effective volume) *Akhmedov, et al. JHEP 02 (2013) 082*

...BUT

- Uncertainties: atmospheric neutrino fluxes oscillation parameters Earth matter effects
- Kinematic smearing v $\rightarrow \mu$ (few degrees)
- Detector finite efficiency and resolution in E O NH : event rate o(E) = 25.0 %, 0(µ)

-0.8

-0.6

-1.0

 $\cos \theta_{z}$

-0.4

NH : event rate -σ(E) = 25.0 % , θ(μ), >=15 hits

0

-0.2

The ORCA detector

ORCA detector:

50 strings 20m spaced20 DOM/string spaced 6m

Instrumented volume:

 $\Pi \times 70^2 \times 114 = 1.75 \text{ Mt}$

- Multi-PMT DOM
- 31 small PMTs
- Almost uniform coverage
- Photon counting
- All electronics inside

The ORCA detector: simulation chain

Detector info

Sea Bed

Good energy/angular resolution required \rightarrow focus on v_{μ} CC contained events (track + shower)

- 1) Muon track reconstruction
 - + track length estimation (first/last emission point)
- 2) Identification of hits belonging to hadronic shower
- 3) Re-estimation of vertex position (assuming spherically expanding shower)

improved vertex identification improved track length estimate

Reconstructed energy E_{R} vs muon energy E_{μ}

(bands are 10 range, black lines are median per energy bin)

Muon energy estimate most reliable for fully contained tracks need study on containment condition, veto ? see detector optimisation, background rejection need estimation of shower energy (inelasticity) to obtain neutrino energy

Reconstructed energy E_{R} vs neutrino energy E_{ν}

Muon energy estimate most reliable for fully contained tracks need study on containment condition, veto ? see detector optimisation, background rejection need estimation of shower energy (inelasticity) to obtain neutrino energy

ANGULAR RESOLUTION

EFFECTIVE VOLUME

Intrinsic limitations

Physical processes:

- -Vertex physics
- particle propagation
- Cherenkov light emission

...accessible only via the detected photons: number ~ energy direct photons ~ direction

Impact of intrinsic limitations (assuming every photon is detected)?

- Muons (CC): fluctuations in track length (\rightarrow energy) and direction
- Showers (NC/CC): particle production at vertex, cascade composition, energy/momentum of recoil nucleus...
- fluctuations in Cherenkov yield

Intrinsic limitations

- Muon track length fluctuations (PRELIMINARY):
 - ~ 8% muon energy resolution
 - ~ 4° mean angular deviation at 10 GeV
- -Shower-to-shower fluctuations:

Shower energy reconstruction intrinsically limited: ~ 50% at 1 GeV ~ 20% at 10 GeV Shower angular reconstruction: detector efficiency also matters !

Background rejection

Main backgound: atmospheric muons misreconstructed as upgoing

Global fit approach

 $\hat{\theta}^{H}$

likelihood ratio test with nuisance parameters:

 $\Delta \log(L^{\max}) = \sum_{\text{bins}} \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$

maximum-likelihood estimates for the ∆m²'s and angles using both data and constraints from global fit. <u>nb</u>: constraints are different for H=IH and H=NH

the fitting procedure allows to extract the value of the oscillation parameters !

Eres = 25%,	1-100 GeV			
Mton x yr	$\sigma(\Delta m^2_{large}) (eV^2)$	$\sigma(\theta_{23})$ (deg)	$\sigma(\theta_{13})$ (deg)	
0(now)	8.0e-5	1.3	0.45 🔶	current knowledge
1	4.3e-05	0.61	0.42	
5	2.3e-05	0.32	0.44	Good consitivity
10	1.8e-05	0.22	0.39	4 M^2
20	1.4e-05	0.16	0.39	$10 \Delta \text{m}^2_{\text{large}} \propto \theta_{23}$. X2 improvement
30	1.2e-05	0.13	0.37	with only 1 wit yr!

Projected sensitivity:

Estimate made on basis of educated guesses -- to be reevaluated with actual detector performances !

Toy Monte Carlo approach

Statistical method:

- 1) generate pseudo-experiments with a fixed true hypothesis (NH/IH)
- 2) For each test model (t=IH,NH) compute extended unbinned likelihood
- 3) Compute test statistics $\eta = \log(L_{NH}/L_{IH})$

4) p-value for NMH identification
 at given C.L. α:
 fraction of events complying

(integrated over all $\eta)$

Toy Monte Carlo approach

Systematics studied by introducing biases in the distributions

If true/model hypotheses have different parameters unphysical results false positives: misidentified hierarchy

IMPACT of...

- shape : moderate
- normalization: large
 (but can be normalized from data)

-Solar (Δm_{small}^2 , Θ_{12}), δ_{CP} : weak -Atmospheric (Δm_{large}^2 , Θ_{23} , Θ_{13}): large

almost negligible

(same conclusions shared by many ORCA groups)

Neutrino Fluxes) ->(Honda as base option - comparison with FL and Bartol.	UKA
Oscillation Probabilities) →(GLoBES	
Earth density profile	→(PREM (in GLoBES) - 1000 steps per baseline baselines (steps of 0.02 in the zenith angle	e - 50 e θ)
Neutrino cross sections) → (GLoBES	
Detector specific information on the event reconstruction	 →(Muon energy reconstruction only Energy threshold at 5 GeV	14

σ_F/E [%]

σ_ε/Ε [%]

Detector optimisation studies

A neutrino beam to ORCA?

Counting MUONS from a neutrino beam

F. Vissani et al., Eur.Phys.J. C73 (2013) 2439

Optimal beamline for NH/IH separation: 7000-8000 km

GLOBES $\cos\theta = 0.6$, baseline = 7645 km (beam inclination ~37°)

Favoured Option: FermiLab → KM3Net site in Mediterranean Sea 1300 versus 950 events for both mass hierarchy hypotheses in Mton underwater detector (ORCA)

Narrow-band beam 6-9 GeV, 10²⁰ pot

	Fermilab	CERN	J-PARC
South Pole	11600	11800	11400
Sicily	7800	1230	9100
Baikal Lake	8700	6300	3300

A neutrino beam to ORCA?

Counting ELECTRONS from a neutrino beam

J. Brunner, arXiv:1304.6230

```
Optimal beamline for NH/IH separation:
~2600 km (largest difference in event rates)
```


- moderate inclination
- almost insensitive to $\delta_{\mbox{\tiny CP}}$

A possible option: Protvino (Proton Accelerator Complex) \rightarrow Toulon

need $1.5 \ 10^{21}$ pot

From preliminary studies: 7σ discrimination in 3 yr from event counting only (3σ with 3-4% systematics)

Summary

 Neutrino mass hierarchy measurement with large Cherenkov detectors: probably tougher than originally thought...but possible need good control of systematics (acceptance, energy/angle measurements, backgrounds, flavour contamination...)
 with 10 Mton detector: 3σ in one year, 5σ in 3 years
 also good sensitivity to oscillation parameters Δm²_{large} and θ₂₃: x2 improvement on current uncertainty with only 1 Mton yr

* ORCA feasibility study ongoing:

- encouraging performances achieved with reference detector (1.75 Mton): energy/angular reconstruction (muon tracks) atmospheric muon background rejection (> no need for veto ?) flavour discrimination ?
- detector optimization launched

Beam option: complementary to atmospheric measurement
 Protvino an option (possible synergy with Modane ? ~4° apart...)

BACKUP

A neutrino beam to ORCA?

From J. Brunner

- ORCA reference detector, vertex inside instrumented volume
- Same function for all CC interaction
- Same light yield for ν_{μ} and ν_{e}
- NC evaluated at E/2
- Flavor misidentification probability based on C2GT project
- Event rates for 10²¹ pot (3 years)

, probability	0.5 0.4		$\epsilon(E$	ν) =	$\eta(E_{\nu}$) = 1	l/(<i>E</i> ,	,/GeV	$V); E_{\iota}$, > 2	GeV	
dentification	0.3	-										
wour misi	0.2	-	 							•••••		
Fla	0.1 0	-	 3	4	5	6		, , , , ,	8	Ч. т. 9 Е	10 ↓ (GeV)	

Channel	Tracks NH	Tracks IH	Cascades NH	Cascades IH	
No oscil	26	315	6		
Signal	8990	8735	1134 - 1547	350 - 519	
Misreco	232-329	47-79	1326	1280	
ν_{τ}	324-332	351-355	978-998	1057-1068	
NC	1092	1092	3640	3640	
BG Total	1655-1745	1494-1522	5944-5964	5977-5988	
Total	10645-10736	10229-10257	7099-7491	6338-6496	

7 σ stat. separation 3 σ with 3-4% sys

No assumption on energy reconstruction

Dark matter

WIMP annihilation in the Sun

PINGU

20, 40 string configurations are considered for PINGU.

PINGU string (I/II): 60 / 100 DOMs, spacing: 5 / 3 m

Higher density arrays were also simulated to completely explore the geometry parameter space. Rezo Shanidze, ORCA meeting, 18/04/2013

PINGU (26m String Spacing) Effective Volume (*) ρ_{ice}V_{eff}(MTon) 10 Cuts: >20 Hits/Event 8 Vertex $(x^2+y^2)^{1/2} < R$ Vertex -500m < z < -157m 6 Triggered Effective Volume, R=75m Physical Volume, R=75m 2 Triggered Effective Volume, R=100m Physical Volume, R=100m 0 35 45 5 10 15 20 25 30 40 50 v_uEnergy (GeV)

* No reconstruction has been done.

Effective volume will be lower after folding the reconstruction efficiency.

PINGU

m

the geometry parameter space.

Rezo Shanidze, ORCA meeting, 18/04/2013

* No reconstruction has been done.

Effective volume will be lower after folding the reconstruction efficiency.

Detector performance studies

Other ongoing/planned studies

Shower-to-shower fluctuations (both nu_mu and nu_e)

intrinsic fluctuations in vertex physics induce 15-20% fluctuations in expected N_{photons} ...

Flavor identification & contamination
 impact of nu_e misreconstructed as nu_mu ?
 evaluate contamination rate
 evaluate impact on NMH sensitivity
 (Toy MC Tool)

Trigger studies

TnOMm

Trigger condition:

at least 'n' OMs with 'm' L0 (> 0.3pe) pulses correlated in **space** (neighbouring or next-to neighbouring PMTs) and **time** (< 20ns).

Example: T4OM2

good performance for fully contained tracks

* Muon background evaluation: just started

Event rates – All Flavours & Mis-ID

- Event numbers for 1.5 10²¹ pots
- 9-18% difference for NH/IH
- 7 σ statistical separation of MH hypotheses
- Can allow for 3-4 % syst. uncertainty

Synergies between potential Sites

Cos(θ) Global fit approach 0.9 0.8 0.7 example of 0.6 to optimally distinguish between IH and NH: 1vr of data likelihood ratio test with nuisance parameters 0.3 0.2 $(\rightarrow deal with degeneracies by fitting)$ 0.2 0.4 0.6 0.8 1 1.2 1.4 log(E) $\Delta \log(L^{\max}) = \sum \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$ bins maximum-likelihood estimates for the Δm^2 's and angles using дH both data and constraints from global fit. nb: constraints are different for H=IH and H=NH 1) fit mixing parameters assuming NH a40 ov datasets toy datasets 2) fit mixing parameters assuming IH generated generated with NH with NH 100 3) compute DlogL = log(L(NH)/L(IH))80 60 40 20 (example shown is for 10 Mt*yr) -30 -20 -10 -40 0 10 20 log likelihood ratio

Global fit approach

The fitting procedure also allows to extract the value of the oscillation parameters !

The

the liste

kno

the

sho

curr

1 Mton*year (NH true, NH fit)

Toy Monte Carlo approach

Systematics studied by introducing biases in the distributions

If true/model hypotheses have different parameters unphysical results false positives: misidentified hierarchy

IMPACT of...

- shape : moderate
- normalization: large
 (but can be normalized from data)
- -Solar (Δm_{small}^2 , Θ_{12}), δ_{CP} : weak -Atmospheric (Δm_{large}^2 , Θ_{23} , Θ_{13}): large

almost negligible

(same conclusions shared by many ORCA groups)

Neutrino Fluxes		Honda as base option - comparison with FLUKA and Bartol.
Oscillation Probabilities	→ (GLoBES
Earth density profile	-	PREM (in GLoBES) - 1000 steps per baseline - 50 baselines (steps of 0.02 in the zenith angle θ)
Neutrino cross sections	→ (GLoBES
Detector specific information on the event reconstruction	→(Muon energy reconstruction only Energy threshold at 5 GeV

σ_F/E [%]

σ_ε/Ε [%]