## next

### Neutrino Experiment with a Xenon TPC Now and Beyond Igor Liubarsky Instituto de Física Corpuscular-Valencia Spain



### Detector Concept



# $\begin{array}{c} Bolotnikov, Ramsey NIM A 396 (1997) \\ Bolotn$

#### Energy Resolution

- Background events in the ROI limit sensitivity of the experiment
- Good energy resolution is essential

#### Tracking

#### Topological Signature of 2e⁻ reduce background





### Detector Concept



- $\beta$  s produce electron recoils and excite and ionise Xe
- Xe de-excites producing scintillation light S1
- Electric drift field prevents recombination and moves ionised tracks towards EL region
- Ionised tracks excite Xe in the EL region producing secondary scintillation S<sub>2</sub>
- S<sub>1</sub> and S<sub>2</sub> light is read by the PMTs in the energy plane to obtain the energy of the event
- S<sub>2</sub> light is read by the MPPC (SiPMTs) in the tracking plane to obtain topological information about the event

### The NEXTs

#### NEXT-DEMO (@IFIC) NEXT-DBDM (@LBNL)

- Non-radiopure, above ground and unshielded
- 1–2 kg of normal Xe gas prototypes
- Set proof of principle
- Demonstrated near intrinsic energy resolution
- Demonstrated tracking
- I9-1" PMTs, 4 DB @64 MPPC

#### NEXT-NEW

- First phase of NEXT 100 up to the end 2014
- Radiopure, at LSC and shielded in a lead castle
- IO-15 kg of 90% isotopically enriched <sup>136</sup>Xe gas
- Sensitive to  $2\beta 2\nu$  decay-topological signature
- I2 ultra low background PMTs, 23 DB @64 MPPC (20% of sensors of NEXT 100)
- Full validation of background model
- Field Cage 1:2 NEXT 100

#### NEXT 100

- Commence 2015
- Radiopure, at LSC and shielded in a lead castle
- I00-150 kg of 90% isotopically enriched <sup>136</sup>Xe gas
- Money shot  $2\beta 0\nu$  decay
- 65 ultra low background PMTs, 111 DB @64 MPPC







### Labaratorio Subterráneo de Canfranc LSC

Viana

groño

cebai de

•Located in the Spanish Pyrenees on the Spanish-French Border

•Excavated in the rock 850m (2,450mwe) deep under the Mount Tobazo

•Total area 1,250 m2



4808470





### NEXT-DEMO



- Cage Mounted on CF300 endcap
- PTFE PMT Support for 19 Hamamatsu
   R7378A rated to 20bar
- Energy plane 100mm from Cathode protected by a screen grid
- PEEK supports for Al field rings
- ID 160mm Field Rings
- Hexagonal light pipe made of TPB coated
   PTFE 9mm panels
- Ø Drift length 300mm
- Drift voltage 350–500V/cm
- EL region 5mm made of 88% transparent stainless meshes with 30  $\mu\rm m$  wires
- Tracking plane located 2mm behind anode grid made of 4 DB @64 Hamamatsu S10362-11-050P MPPC in a 10mm square pitch patten
- ${\rm \ref{scalar}}$  Continuous re-circulation through SASE hot getter  ${\rm \sim}100~{\rm slpm}$



#### Hot Getter) (Gas System)

DAQ

PMTs FEE

NEXT-DEMO

### (HHV modules)



#### SIPMs FEE

### NEXT-DEMO







#### next

### NEXT-DEMO Energy resolution

0.8 % FWHM extrapolated  $@ Q_{\beta\beta}(E^{-1/2} \text{ dependence})$ 





### NEXT-DEMO Topology



Topology reconstruction:

- Barycenter using SiPM signal integrated in 4  $\mu$ s
   slices and track reconstructed using 3D splines
- Energy of each slice given by the Energy plane

#### 'blob' of the electron clearly visible!



### NEXT-DEMO Topology



### NEXT-NEW





- Active Volume Radius 240 mm
- Active Volume Length 510 mm
- Buffer Region 70 mm
- Maximum Allowable Working pressure 30 bar
- a 4-Inner diameter 640 mm
- Ø Outer Diameter, Vessel 664mm
- Outer Diameter, Flanges 820 mm
- Total PMTCANS: 12
- Total DB 28 @64 MPPC (total 1,904)

- Vessel Material, Austenitic Stainless Steel, Alloy 316Ti
- Shielding Copper Material : CuA1-CuC1
- Cylindrical Vessel Wall thickness 12 mm
- Torispheric Head Wall thickness 12,5 mm
- Flange thickness, head to vessel (each) 50mm



### NEXT-NEW Energy Plane

- Hamamatsu R11410-10 Ultra Low background PMT
- Run in differential mode
- Protected for pressure in copper enclosures with brazed sapphire windows
- Enclosures are continuously vacuum pumped and RGA sensed for Xe leaks







### NEXT-NEW Tracking

next





### **NEXT 100**



IOO-150 <sup>136</sup>Xe (90% enriched)
 High Pressure Gas TPC

Explore ββον to 100 meV
 effective ν masses

 Will use same ancillary systems as NEXT-NEW

Energy and tracking larger version of NEXT NEW

Full size Field Cage

next

Igor.Liubarsky@IFIC.uv.es

### Low Background Measurements Facilities at LSC





Low Background

### Measurements

| +  | Material                | Supplier                 | Technique | Unit                | 238U          | 226Ra           | 232Th             | 228 Th       | 235 U      | 40K         | 60Co           | 137Cs     |
|----|-------------------------|--------------------------|-----------|---------------------|---------------|-----------------|-------------------|--------------|------------|-------------|----------------|-----------|
|    | Shielding               |                          |           |                     |               |                 |                   |              |            |             |                |           |
| 1  | Pb                      | Cometa                   | GDMS      | mBq/kg              | 0.37          |                 | 0.073             |              |            | < 0.31      |                |           |
| 2  | РЬ                      | Mifer                    | GDMS      | mBo/ke              | <1.2          |                 | <0.41             |              |            | 0.31        |                |           |
| 3  | РЬ                      | Mifer                    | GDMS      | mBq/kg              | 0.33          |                 | 0.10              |              |            | 1.2         |                |           |
| 4  | РЬ                      | Tecrubusa                | GDMS      | mBq/kg              | 0.73          |                 | 0.14              |              |            | 0.91        |                |           |
| 5  | РЬ                      | Tecnibusa                | Ge        | mBq/kg              | <94           | <2.0            | <3.8              | <4.4         | <30        | <2.8        | <0.2           | <0.8      |
| 6  | РЬ                      | Tecnibusa                | Ge        | mBq/kg              | <57           | <1.9            | <1.7              | <2.8         | <22        | <1.7        | <0.1           | <0.5      |
| 7  | Cu (ETP)                | Sammetal                 | GDMS      | mBq/kg              | < 0.062       |                 | < 0.020           |              |            |             |                |           |
| 8  | Cu (C10100)             | Luvata (hot rolled)      | GDMS      | mBq/kg              | < 0.012       |                 | < 0.0041          |              |            | 0.061       |                |           |
| 9  | Cu (C10100)             | Luvata (cold rolled)     | GDMS      | mBq/kg              | < 0.012       |                 | < 0.0041          |              |            | 0.091       |                |           |
| 10 | Cu (C10100)             | Luvata (hot+cold rolled) | Ge        | mBq/kg              |               | <7.4            | <0.8              | <4.3         |            | <18         | <0.8           | <1.2      |
| _  | Vessel                  |                          |           |                     |               |                 |                   |              |            |             |                |           |
| 11 | т                       | SMP                      | Ge        | mBq/kg              | <233          | <5.7            | <8.8              | <95          | 3.4±1.0    | <22         | <3.3           | <5.2      |
| 12 | Ti                      | SMP                      | Ge        | mBq/kg              | <361          | <6.6            | <11               | <10          | <8.0       | <15         | <1.0           | <1.8      |
| 13 | n                       | Ti Metal Supply          | Ge        | mBq/kg              | <14           | <0.22           | <0.5              | 3.6±0.2      | 0.43±0.08  | <0.6        | <0.07          | <0.07     |
| 14 | 304L SS                 | Pfeiffer                 | Ge        | mBq/kg              |               | $14.3 \pm 2.8$  | 9.7±2.3           | 16.2±3.9     | 3.2±1.1    | <17         | $11.3 \pm 2.7$ | <1.6      |
| 15 | 316Ti SS                | Nironit, 10-mm-thick     | Ge        | mBq/kg              | <21           | <0.57           | <0.59             | <0.54        | <0.74      | < 0.96      | 2.8±0.2        | < 0.12    |
| 16 | 316Ti SS                | Nironit, 15-mm-thick     | Ge        | mBq/kg              | <25           | <0.46           | < 0.69            | <0.88        | <0.75      | <1.0        | 4.4±0.3        | <0.17     |
| 17 | 316Ti SS                | Nironit, 50-mm-thick     | Ge        | mBq/kg              | 67±22         | <1.7            | $2.1\pm0.4$       | 2.0±0.7      | 2.4±0.6    | <2.5        | 4.2±0.3        | <0.6      |
| 18 | Inconel 625             | Mecanizados Kanter       | Ge        | mBq/kg              | <120          | <1.9            | <3.4              | <3.2         | <4.6       | <3.9        | <0.4           | <0.6      |
| 19 | Inconel 718             | Mecanizados Kanter       | Ge        | mBq/kg              | 309±78        | <3.4            | <5.1              | <4.4         | 15.0±1.9   | <13         | <1.4           | <1.3      |
|    | HV, EL components       |                          |           |                     |               |                 |                   |              |            |             |                |           |
| 20 | PEEK                    | Sanmetal                 | Ge        | mBq/kg              |               | 36.3±4.3        | 14.9±5.3          | $11.0\pm2.4$ | <7.8       | \$.3±3.0    | <33            | <2.6      |
| 21 | Polyethylene            | IN2 Plastics             | Ge        | mBq/kg              | <140          | <1.9            | <3.8              | <2.7         | <1.0       | <8.9        | <0.5           | <0.5      |
| 22 | Semitron ES225          | Quadrant EPP             | Ge        | mBq/kg              | <101          | <2.3            | <2.0              | <1.8         | 1.8±0.3    | 513±52      | <0.5           | <0.6      |
| 23 | SMD resistor            | Farnell                  | Ge        | mBq/pc              | 2.3±1.0       | $0.16 \pm 0.03$ | 0.30±0.06         | 0.30±0.05    | <0.05      | 0.19±0.08   | <0.02          | < 0.03    |
| 24 | SMSD resistor           | Finechem                 | Ge        | mBq/pc              | 0.4±0.2       | 0.022±0.00      | 7 <0.023          | < 0.016      | 0.012±0.00 | 050.17±0.07 | <0.005         | <0.005    |
| _  | Energy, tracking planes |                          |           |                     |               |                 |                   |              |            |             |                |           |
| 25 | Kapton-Cu PCB           | LabCircuits              | Ge        | mBq/cm <sup>2</sup> | <0.26         | < 0.014         | < 0.012           | <0.008       | <0.002     | < 0.040     | < 0.002        | < 0.002   |
| 26 | Cuffon                  | Polyfion                 | Ge        | mBq/kg              | <33           | <1.3            | <1.1              | <1.1         | <0.6       | 4.8±1.1     | <0.3           | <0.3      |
| 27 | Bonding films           | Polyfion                 | Ge        | mBq/kg              | $1140 \pm 30$ | 0 487±23        | 79.8±6.6          | 66.0±4.8     | 60.0±5.5   | \$32 ±87    | <4.4           | <3.8      |
| 28 | FFC/FCP connector       | Hirose                   | Ge        | mBq/pc              | <50           | 4.6±0.7         | 6.5±1.2           | 6.4±1.0      | <0.75      | 3.9±1.4     | <0.2           | <0.5      |
| 29 | P5K connector           | Panasonic                | Ge        | mBq/pc              | <42           | 6.0±0.9         | 9.5±1.7           | 9.4±1.4      | <0.95      | 4.1±1.5     | <0.2           | <0.8      |
| 30 | Thermopl. connector     | Molex                    | Ge        | mBq/pc              | <7.3          | 1.77±0.08       | 3.01±0.19         | 2.82±0.15    | <0.31      | 2.12±0.25   | <0.022         | 0.27±0.03 |
| 31 | Solder paste            | Multicore                | Ge        | mBq/kg              | <310          | <4.9            | <8.0              | <6.0         | <5.2       | <13         | <1.0           | <1.6      |
| 32 | Solder wire             | Multicore                | Ge        | mBq/kg              | <4900         | (7.7±1.2)10     | <sup>2</sup> <147 | <14          |            | <257        | <30            | <36       |
| 33 | Ta capacitor            | Vishay Sprague           | Ge        | mBq/pc              | <0.8          | 0.043±0.003     | 30.034±0.004      | 0.032±0.003  | < 0.010    |             | < 0.002        | < 0.003   |



### Comparing NEXT

- EXO200 and KamLAND-Zen set current best limits on <sup>136</sup>Xe  $\beta \beta 0 \nu$ 
  - Assume same background and energy resolution that currently measured
- NEXT-100 reach on  $m_{\beta\beta}$ 
  - Using estimation of background contamination and measurements of energy resolution with prototypes



| Experiment  | M<br>(kg) | enrichment<br>(%) | efficiency<br>(%) | ΔE<br>(% FWHM) | B<br>(10 <sup>-3</sup> ckky) | $\Delta E$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------|-------------------|-------------------|----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXO-200     | 110       | 81                | 52                | 3.9            | 1.5                          | Tracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KamLAND-Zen | 330       | 91                | 62                | 9.9            | 1.0                          | And a stand of the |
| NEXT-100    | 100       | 91                | 30                | 0.7            | 0.5                          | GDR neutrino Lyon Novembe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Igor.Liubarsky@IFIC.uv.es NEXT-Collaboration

IFIC (Valencia), U. Zaragoza, U. Santiago, U. Girona, U. Politécnica Valencia, U. A. Madrid

U. Coimbra, U. Aveiro



LBNL, Texas A&M U., Iowa State U.

JINR (Dubna)

4



U. Antonio Nariño (Bogotá)



Collaboration members at Canfranc Underground Laboratory, over 80 people, 5 countries

Grants: Consolider-2008 (Spain), ERC-ADG 2013 (EU)



next 🖉







### NEXT Collaboration

Always ready to welcome new collaborators willing:

- To bring technical expertise
- To bring resources
- To contribute to the project
- To work in hardware
- To do software and analysis, if you really must



### Concluding Remarks

#### NEXT-DEMO has demonstrated:

- Energy resolution < 1% FWHM</p>
- Tracking Capabilities
- Facilities and Infrastructure at LSC
  - Laboratory Space is ready
  - IOO kg of 90% enriched <sup>136</sup>Xe is at LSC
  - Ge counters for radiopurity testing

#### Ø NEXT-NEW

- Output Under Construction Presently
- Gas system at LSC
- Electronics at LSC
- IO kg at LSC by end of 2014
- Able to measure  $\beta \beta 2\nu$  (~600 expected detected events in half year) and validate background modelling and reconstruction

#### NEXT 100 at LSC by 2016

- Use same ancillary systems as NEXT-NEW
- Explore  $\beta \beta 0 \nu$  to 100 meV effective  $\nu$  masses
- Can be a solution to multi tonne Next generation of detectors to explore down to 20 meV effective ν masses



## The End