Capture Reactions with Halo EFT

Renato Higa

Instituto de Física Universidade de São Paulo

collab. with L. Fernando and G. Rupak (Mississippi State University) Critical Stability Santos, October 14, 2014

Capture Reactions with Halo EFT

Outline

- motivation
- *n*-⁷Li system:
 - low-energy structure
 - low-energy approaches
- $\bullet\,$ halo EFT for $n+{^7{\rm Li}} \rightarrow {^8{\rm Li}} + \gamma$
 - E_1 capture
 - M_1 capture
- Summary and outlook

• $p + {}^{7}Be \rightarrow {}^{8}B + \gamma$ $\mapsto {}^{8}Be + e^{+} + \nu_{e}$ \Rightarrow major uncertainty on ν_{e} flux $\Rightarrow S_{17}(0)$: low-energy extrapolation \Rightarrow matter/vacuum oscillations \Rightarrow direct/inverse hierarchy

- mirror symmetry: ${}^{7}\mathrm{Li}(n,\gamma){}^{8}\mathrm{Li}$
 - non-homogeneous BBN: bridge the A = 8 gap ${}^{1}\text{H}(n,\gamma){}^{2}\text{H}(n,\gamma){}^{3}\text{H}(d,n){}^{4}\text{He}(t,\gamma){}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}$ ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{-}){}^{12}\text{C} \dots$

the n-⁷Li system

Bound states:

• 2⁺ (-2.03 MeV): $\frac{1}{\sqrt{2}}[{}^{5}P_{2} + {}^{3}P_{2}] (p_{3/2})$ • 1⁺ (-1.05 MeV): $\frac{1}{\sqrt{2}}[{}^{5}P_{2} - {}^{3}P_{2}] (p_{1/2})$

 \Rightarrow Scattering states:

• 5S_2 : $a_0^{(2)} = -3.63 \pm 0.05 \; {\rm fm}$

•
$3S_1$
: $a_0^{(1)} = 0.87 \pm 0.07$ fm

• 3P_3 : $E_R=0.222$ MeV, $\Gamma_R=0.031$ MeV

\Rightarrow Radiative capture:

- ${}^{5}S_{2}, {}^{5}S_{2} \rightarrow 2+$ (E1, 89.4%)
- ${}^{5}S_{2}, {}^{5}S_{2} \rightarrow 1+$ (E1, 10.6%)
- ${}^{5}P_{3} \rightarrow 2+$ (M1)

potential models vs EFT

EFT: basic ideas

 $1 \to 10 \,\, {\rm GeV}$

• QCD/SM: quarks, gluons vs. hadrons

 $100~{\rm MeV} \rightarrow 1~{\rm GeV}$

• χ EFT, phenomenology (meson theory)

- $< 50 {\rm ~MeV}$
- *TEFT*, Halo/cluster EFT, phenomenology

halo/cluster EFT for n-⁷Li (scatt. states)

$$\mathcal{L}_{\rm kin} = N^{\dagger} \left[i\partial_0 + \frac{\vec{\nabla}^2}{2M_N} \right] N + C^{\dagger} \left[i\partial_0 + \frac{\vec{\nabla}^2}{2M_C} \right] C ,$$

$$\mathcal{L}_{\rm int,s} = \phi_i^{(s)\dagger} \left[\underbrace{i\partial_0 + \frac{\vec{\nabla}^2}{8\mu}}_{\sim C_2} - \underbrace{\Delta}_{\sim C_0} \right] \phi_i^{(s)} + g_0 \left[\phi_i^{(s)\dagger} N^T \tilde{P}_i^{(s)} C + \text{H.c.} \right] + \cdots ,$$

$$\Delta \sim \frac{M_{hi}^2}{\mu} \rightarrow iD_s^{(0)} = \frac{i}{-\Delta + i\epsilon} \sim \frac{\mu}{M_{hi}^2}$$

$$\Delta \sim \frac{M_{hi}^2}{\mu} \frac{M_{lo}}{M_{hi}} \rightarrow iD_s^{(0)} = \frac{i}{-\Delta + i\epsilon} \sim \frac{\mu}{M_{hi}M_{lo}}$$

$$(^3S_1)$$

FRHAFITE SS IISP

8

halo/cluster EFT for n-⁷Li (bound state)

p-wave: Bertulani, Hammer, van Kolck; Bedaque, Hammer, van Kolck

• two operators at LO!

$$\mathcal{L}_{\text{int},p} = \phi_{ij}^{(p)\dagger} \left[i\partial_0 + \frac{\vec{\nabla}^2}{8\mu} - \Delta \right] \phi_{ij}^{(p)} + g_1 \left[\phi_{ij}^{(p)\dagger} N^T \tilde{P}_{ij}^{(p)} C + \text{H.c.} \right] + \cdots,$$

$$\Delta \sim M_{lo}^2/\mu \quad \to \quad iD_p^{(0)} = \frac{i}{q_0 - q^2/8\mu - \Delta + i\epsilon} \sim \frac{\mu}{M_{lo}^2} \qquad ({}^3P_2, {}^5P_2)$$

$$\mathbf{D}_{p} = \frac{i}{q_{0} - \boldsymbol{q}^{2}/8\mu - \Delta - 6g_{1}^{2}L} \quad \Rightarrow \quad \boldsymbol{\mathcal{Z}}^{-1} \equiv \frac{\partial}{\partial q_{0}} \left[\mathbf{D}_{p}^{-1}\right]_{\text{pole}} = \frac{-2\pi}{3(\gamma_{B} + \boldsymbol{r_{1}})}$$

pole: $oldsymbol{q}=0; q_0=-\gamma_B^2/2\mu$

• gauge invariance: cancellation of divergences (Phillips and Hammer)

$$\sigma_{\text{capture}}^{E_1} = \frac{\mathcal{Z}}{32\pi M^2} \frac{k_{\gamma}}{p} \alpha_{em} \left(\frac{Z_C M_N}{M}\right)^2 F(p, \gamma_B, M_C, M_N, a_0^{(1)}, a_0^{(2)})$$

10

Wigner bound

For short-range, S-wave, E-independent V,

$$r_0 \le 2\left(R - \frac{R^2}{a} + \frac{R^3}{3a^2}\right) \qquad \text{(Wigner 55')}$$

equivalent to

$$\frac{d}{dE} \left[\sqrt{2\mu E} \, \cot \delta(E) \right] \le 0$$

(Philips et al. 1998, Lee and Hammer 2010)

Wigner bound

For short-range, S-wave, E-independent V,

$$r_0 \le 2\left(R - \frac{R^2}{a} + \frac{R^3}{3a^2}\right) \qquad \text{(Wigner 55')}$$

equivalent to

$$\frac{d}{dE} \left[\sqrt{2\mu E} \, \cot \delta(E) \right] \le 0$$

(Philips et al. 1998, Lee and Hammer 2010)

Constraints from divergences of loop integrals

infinities are good!!!

Davids-Typel: $r_1 \approx -0.30 \text{ fm}^{-1}$ Tombrello: $r_1 \approx -0.46 \text{ fm}^{-1}$ Wigner bound: $r_1 \lesssim -1 \text{ fm}^{-1}$

erente 💦 💷

Davids-Typel: $r_1 \approx -0.30 \text{ fm}^{-1}$ Tombrello: $r_1 \approx -0.46 \text{ fm}^{-1}$ EFT: $r_1 = -1.47 \text{ fm}^{-1}$ (G. Rupak, RH, PRL 106, 222501, 2011)

(Izsák et al., arXiv:1312.3498 [nucl-ex], to appear @ PRC)

the n-⁷Li system

Bound states:

• 2⁺ (-2.03 MeV): $\frac{1}{\sqrt{2}}[{}^{5}P_{2} + {}^{3}P_{2}] (p_{3/2})$ • 1⁺ (-1.05 MeV): $\frac{1}{\sqrt{2}}[{}^{5}P_{2} - {}^{3}P_{2}] (p_{1/2})$

 \Rightarrow Scattering states:

• 5S_2 : $a_0^{(2)} = -3.63 \pm 0.05 \text{ fm}$

•
$3S_1$
: $a_0^{(1)} = 0.87 \pm 0.07$ fm

• 3P_3 : $E_R=0.222$ MeV, $\Gamma_R=0.031$ MeV

Radiative capture:

- ${}^{5}S_{2}, {}^{5}S_{2} \rightarrow 2+$ (E1, 89.4%)
- ${}^{5}S_{2}, {}^{5}S_{2} \rightarrow 1+$ (E1, 10.6%)
- ${}^5P_3 \to 2+$ (M1)

the n-⁷Li system

Bound states:

- 2⁺ (-2.03 MeV): $\frac{1}{\sqrt{2}}[{}^5P_2 + {}^3P_2]$ (p_{3/2})
- 1⁺ (-1.05 MeV): $\frac{1}{\sqrt{2}}[{}^{5}P_{2} {}^{3}P_{2}]$ (p_{1/2})

 \Rightarrow Scattering states:

• 5S_2 : $a_0^{(2)} = -3.63 \pm 0.05 \text{ fm}$

•
$3S_1$
: $a_0^{(1)} = 0.87 \pm 0.07$ fm

• 3P_3 : $E_R = 0.222$ MeV, $\Gamma_R = 0.031$ MeV

 \Rightarrow Radiative capture:

- ${}^5S_2, {}^5S_2 \rightarrow 2+$ (E1, 89.4%)
- ${}^{5}S_{2}, {}^{5}S_{2} \rightarrow 1+$ (E1, 10.6%)
- ${}^5P_3 \rightarrow 2+$ (M1)

Davids-Typel: $r_1 \approx -0.30 \text{ fm}^{-1}$ Tombrello: $r_1 \approx -0.46 \text{ fm}^{-1}$ EFT: $r_1^{(2^+)} = -1.47 \text{ fm}^{-1}$, $r_1^{(1^+)} = -1.93 \text{ fm}^{-1}$ (L. Fernando, RH, G. Rupak, EPJA 48, 24, 2012)

erente 🎎 💷

EFT: $r_1^{(2^+)} = -1.47 \text{ fm}^{-1}$, $r_1^{(1^+)} = -1.93 \text{ fm}^{-1}$

(L. Fernando, RH, G. Rupak, EPJA 48, 24, 2012)

EFT+*ab*-*initio*: ${}^{5}P_{2}$ - ${}^{3}P_{2}$ weights, ${}^{7}\text{Li}^{*}$

(X. Zhang et al., PRC 89, 024613, 2014)

$$\sigma_{\text{capture}}^{M_1} = \frac{\mathcal{Z}}{32\pi M^2} \left[\frac{k_{\gamma}}{p}\right]^3 p^4 G(p, \gamma_B, M_C, M_N, a_0^{(1)}, a_0^{(2)}, K^{(1)}, K^{(2)}, \beta)$$

$$\begin{split} K^{(1)} &= \sqrt{\frac{3}{2}} \left(\frac{3}{2} g_c - \frac{3}{2} g_n \right), \qquad K^{(2)} = \sqrt{\frac{3}{2}} \left(\frac{3}{2} g_c + \frac{1}{2} g_n + \frac{2\mu Z_c M_n}{M_c^2} \right), \\ & \left(\frac{\mu M_n Z_c}{M_c^2} \vec{L} + g_c \vec{S}_C + g_n \vec{S}_N \right)_z \end{split}$$

erhapite &

 $\Gamma_{exp} pprox 30$ keV; $\Gamma_{pot} pprox 110$ keV

(L. Fernando, RH, G. Rupak, EPJA 48, 24, 2012)

 $\Gamma_{exp} pprox 30$ keV; $\Gamma_{pot} pprox 110$ keV

(L. Fernando, RH, G. Rupak, EPJA 48, 24, 2012)

see also Bennaceur et al., NPA 651, 289, 1999

Summary

- halo/cluster EFT: systematic way of implementing EM currents
- gauge invariance: cancellation of power divergences
- $^{7}\mathrm{Li}(n,\gamma)^{8}\mathrm{Li}$:
 - two operators at LO
 - "normalization" is very sensitive to r_1 (not well-known from elastic scatt.)
 - $r_1 = -1.47 \text{ fm}^{-1}$: excellent description of previous data, respect the Wigner bound
 - potential models: not so reliable extrapolations at low energies, uncontrolled theoretical uncertainties
 - excellent agreement with most recent MSU data (CD)
 - M_1 capture: missing some structure (degrees of freedom)

 E_1 radiative capture (theory: 5P_2 only)

Davids-Typel: $r_1 \approx -0.30 \text{ fm}^{-1}$ Tombrello: $r_1 \approx -0.46 \text{ fm}^{-1}$ Wigner bound: $r_1 \lesssim -1$ fm⁻¹ (Lee and Hammer)

