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OUTLINE OF THE TALK

e Basic facts and physical motivation

e The physical model and the integral equation to solve
e Useful limiting cases, their solution

e The analytical results

e A numerical study



BASIC FACTS AND PHYSICAL MOTIVATION



THE EFIMOV EFFECT
Relevant regime:

e a resonant s-wave binary interaction between particles
e assume infinite scattering length, no two-body bound
state
Then the Efimov effect may occur:
e an infinite number of trimer states

e the spectrum is asymptotic to a geometric sequence, in
the limit of a large quantum number n:
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e the exponent s € iRT is given by Efimov zero-range
theory, contrarily to three-body parameter Eyjg,

e spectrum becomes geometric, as in zero-range theory,
when de Broglie wavelength > interaction ranges



A PARTICULARLY INTERESTING CASE
There exists a control parameter a allowing one to contin-

uously switch on/off the Efimov effect

finite number of‘trimers infinite number of‘trimers
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How does the system evolve from a finite number to an
infinite number of trimer states ?

Simple facts:

e The efimovian states cannot emerge from F = —oo [any
physical spectrum is bounded from below|, they shall
emerge from F =0

e close to threshold, the efimovian states are in the zero-
range regime so their spectrum shall be entirely geomet-
ric



e behavior of exponent s known, vanishes as (o — a¢)l/2:
A(s, ) =0

with A even function of s. At threshold, collision in
s = 0 of two real (a < a¢) or imaginary (o> a¢) roots:

1
532351\(0, ac) + (o — ap)BaA(0, ) = O(a — ae)?
e Does Eqjqp also vanish or diverge at the threshold, with
some critical exponent 7

Our goal here:

e Answer this question quantitatively on a simple but re-
alistic model: the infinitely narrow Feshbach resonance

e Then analytic techniques exist to calculate Eyqp, as done
for three bosons (Gogolin, Mora, Egger, 2008).

e Also three-body losses suppressed in that limit



THE PHYSICAL MODEL AND
THE INTEGRAL EQUATION TO SOLVE



CONFIGURATION & PREDICTIONS OF EFIMOV THEORY

Make Efimov effect avoidable thanks to Pauli exclusion
principle:

e polarized fermions do not interact in s-wave

e so take two same-spin-state fermions of mass mj reso-

nantly interacting (1/a = 0) with an impurity of mass
ma2

e Control parameter is mass ratio @« = m{/ms: no Efimov
effect if a not too large (Efimov, 1973)

Even more interesting: a sequence of efimovian thresholds

e in the sectors of increasing odd angular momenta:

o=V — 13.60696... ol'™) — 75.99449. ..
o= — 187.9583... o\'=7) = 349.6384...

e no Efimov effect for even angular momenta



WHICH IMPURITY-FERMION INTERACTION

e A Feshbach resonance: two-channel model

e in the open channel, van de Waals interaction of length
b and non-resonant scattering length ape, = b

e infinitely narrow: take limit b — 0 for fixed (rather than
diverging) interchannel coupling A. Then corresponding
Feshbach length R, does not vanish. E. g. for |abg| < b:
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e R, gives the effective range of the binary interaction:

1
Tk = + k2R,
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Ansatz for the trimer state of energy F = —h2q2/(2u) < 0:
3
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e Integral equation from Schrodinger’s equation:
d3k’ D(K’)
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where D(k) >~ B(k) for |apg| < b
e effective relative wavenumber between impurity and fermion:
14 2a k2] 1/2
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e At fixed angular momentum: D(k) = d(k)YlO(lA{)

drei(k) = [q2 T



USEFUL LIMITING CASES, THEIR SOLUTION



We shall obtain the trimer energies analytically with a

relative error O(qR+«) by matching two solutions:
range of appli czabi lity of
solution E=-(hq) /2y, R,=0

Its asymptotic ranggi

<

matching interval E(
0 VR, o

: its asymptotic range

' range of applicability of
solution E=0, R,>0

When gR.« < 1 there exists a momentum interval where
both solutions are applicable and are in their £k — oo and
k — 0 asymptotic regimes. Matchable asymptotic forms:

k%d(k) P e9<(k/q)® + c.c. + O(k/q)?
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HOW TO SOLVE ?
E < O, R* = 0:

e Fourier transform the real space Efimov solution
E =0, R« > 0 (Gogolin, Mora, Egger, 2008):

e integral term is scaling invariant. Change of variable & =

In(kR« cosv) [where v = arcsin 1_? — is mass angle] makes

it translationally invariant: setting k?d(k) = F(x),
0=(1+¢e")F(x) + (K * F)(x)
e Fourier transform with respect to x:
0 = F(S+i) + A;(iS, o) F(S)

e Infinite product representation of s — A;(s) over its
roots and poles. Then solution for F(S) is an infinite
product of ratios of I functions [I'(z + 1) = 2I'(2)]



THE ANALYTICAL RESULTS



Exact value of the global energy scale:
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N.B. It is an excellent approximation to neglect the sum

over k



The global energy scale has a finite limit at threshold:

O/lsil > 3(1) = 2(+1) = (L +2)
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where v (z) = I''(x) /T'(x) is the digamma funct(l())n and the
l
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sum is taken over the positive roots of A;(x, ae
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where W is the Lambert function and ~ is Euler’s constant



A NUMERICAL STUDY:
BEYOND THE GEOMETRIC SPECTRUM



ANALYTICAL VS NUMERICAL FUNCTIONS (a = 14)
1 B ' | E I ' PP To—

o 10 12'0 30
x=In(k/q”

Solid line: numerical. Dashed line: asymptotic formula
common to (F < 0, R« = 0) and (F = 0, R« > 0) analytical
solutions. Vertical dotted lines: borders of the matching
interval. N.B. n = 1 is indeed the ground trimer state.



ANALYTICAL VS NUMERICAL SPECTRA
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CONCLUSION

e 2 + 1 fermionic problem, mass ratio o, narrow Feshbach
resonance

e at each Efimov threshold (of odd angular momentum 1),
the corresponding trimer spectrum is entirely geometric:

(1)+
aA— O

where the ground state trimer is n = 1
e the exact expression of Eéllz)b shows that it has a finite

and non-zero limit at threshold
e opposite limit @« — +00: spectrum becomes hydrogenoid

(1) hl o 1
E;, ~ -
a—oo  16uR2(n + 1)?
as predicted by the Born-Oppenheimer approximation




