NO LIMIAR DO EFEITO EFIMOV

Y. Castin, E. Tignone LKB, École normale supérieure, Paris (France)

Reference: Phys. Rev. A 84, 062704 (2011).

OUTLINE OF THE TALK

- Basic facts and physical motivation
- The physical model and the integral equation to solve
- Useful limiting cases, their solution
- The analytical results
- A numerical study

BASIC FACTS AND PHYSICAL MOTIVATION

THE EFIMOV EFFECT

Relevant regime:

- ^a resonant ^s-wave binary interaction between particles
- assume infinite scattering length, no two-body bound state
- Then the Efimov effect may occur:
	- an infinite number of trimer states
	- the spectrum is asymptotic to a geometric sequence, in the limit of a large quantum number n :

$$
E_n \mathop{\sim}\limits_{n\mathop{\longrightarrow} +\infty} E_{\mathrm{glob}} e^{-2\pi n/|s|}
$$

- the exponent $s \in i\mathbb{R}^+$ is given by Efimov zero-range theory, contrarily to three-body parameter $E_{\rm glob}$
- spectrum becomes geometric, as in zero-range theory, when de Broglie wavelength [≫] interaction ranges

A PARTICULARLY INTERESTING CASE There exists a control parameter α allowing one to continuously switch on/off the Efimov effect

How does the system evolve from a finite number to an infinite number of trimer states ? Simple facts:

- The efimovian states cannot emerge from $E = -\infty$ [any ^physical spectrum is bounded from below], they shall emerge from $\overline{E}=0$
- close to threshold, the efimovian states are in the zerorange regime so their spectrum shall be entirely geometric

• behavior of exponent s known, vanishes as $(\alpha - \alpha_c)^{1/2}$: $\Lambda(s,\alpha) = 0$

with Λ even function of s . At threshold, collision in s = 0 of two real $(\alpha < \alpha_c)$ or imaginary $(\alpha > \alpha_c)$ roots: 1

$$
\frac{1}{2}s^2\partial_s^2\Lambda(0,\alpha_c)+(\alpha-\alpha_c)\partial_\alpha\Lambda(0,\alpha_c)=O(\alpha-\alpha_c)^2
$$

• Does E_{glob} also vanish or diverge at the threshold, with some critical exponent ?

Our goal here:

- Answer this question quantitatively on a simple but realistic model: the infinitely narrow Feshbach resonance
- Then analytic techniques exist to calculate E_{glob} , as done for three bosons (Gogolin, Mora, Egger, 2008).
- Also three-body losses suppressed in that limit

THE PHYSICAL MODEL AND THE INTEGRAL EQUATION TO SOLVE

CONFIGURATION & PREDICTIONS OF EFIMOV THEORY Make Efimov effect avoidable thanks to Pauli exclusion principle:

- polarized fermions do not interact in s-wave
- \bullet so take two same-spin-state fermions of mass m_1 resonantly interacting $(1/a = 0)$ with an impurity of mass \overline{m}_2
- Control parameter is mass ratio $\alpha = m_1/m_2$: no Efimov $\text{effect if} \ \alpha \ \text{not too large} \ (\text{Efinov, 1973})$

Even more interesting: ^a sequence of efimovian thresholds

• in the sectors of increasing odd angular momenta:

$$
\begin{array}{ll}\n\alpha_c^{(l=1)} = 13.60696 \dots & \alpha_c^{(l=3)} = 75.99449 \dots \\
\alpha_c^{(l=5)} = 187.9583 \dots & \alpha_c^{(l=7)} = 349.6384 \dots\n\end{array}
$$

• no Efimov effect for even angular momenta

WHICH IMPURITY-FERMION INTERACTION

- A Feshbach resonance: two-channel model
- in the open channel, van de Waals interaction of length b and non-resonant scattering length a_bg $\approx b$
- \bullet infinitely narrow: take limit $b \to 0$ for fixed (rather than diverging) interchannel coupling Λ. Then corresponding Feshbach length R_* does not vanish. E. g. for $|a_{\rm bg}|\ll$ \boldsymbol{b} :

$$
R_{*} \simeq \frac{\pi \hbar^{4}}{\Lambda^{2} \mu^{2}}
$$

• R ∗ gives the effective range of the binary interaction:

$$
f_k=\frac{-1}{ik+k^2R_*}
$$

Ansatz for the trimer state of energy E = − ~ 2 q 2 /(2 µ) < 0: |ψ³ at i = Z Q 3 i=1 d 3 k i [(2 π) 3] ³ (2 π) 3 δ (X3 i=1 k i) A(k ¹, k ², k 3) a † k 1 c † k 2 c † k 3 |0 i |ψ¹ at+1 mol i = Z d 3 k (2 π) 3 ^B(k) b † − k c † k |0 i

- <u>Integral equation from Schrodinger's equation:</u> $\sqrt{\frac{1}{2}}$ $q_{\mathrm{rel}}(k)+q$ 2 $\frac{2}{\text{rel}}(k)R_*\big|\,D(\text{k})=-1$ $\begin{bmatrix} \\ \end{bmatrix}$ $\sqrt{\frac{1}{2}}$ d^3k' $2\pi^2$ $\boldsymbol{D}(\mathbf{k'})$ $q^2+k^2+k'^2+\frac{2\alpha}{1+\alpha}$ $\overline{1 + \alpha}$ $\mathbf{k}\!\cdot\!\mathbf{k'}$ where $\overline{D({\rm k})\simeq B({\rm k})}$ for $|a_{\rm bg}|\ll$ \bm{b}
- effective relative wavenumber between impurity and fermion:

$$
q_{\mathrm{rel}}(k)=\left[q^2+\frac{1+2\alpha}{(1+\alpha)^2}k^2\right]^{1/2}
$$

 \bullet At fixed angular momentum: $D({\rm k})=d(k)Y_l^0$ $\tilde{l}^0(\hat{\rm k})$

USEFUL LIMITING CASES, THEIR SOLUTION

We shall obtain the trimer energies analytically with a $\operatorname{relative}\ \operatorname{error}\ O(qR_\ast)$ by matching two solutions:

When $qR_*\ll 1$ there exists a momentum interval where both solutions are applicable and are in their $k \to \infty$ and $k \to 0$ asymptotic regimes. Matchable asymptotic forms:

$$
k^2 d(k) \mathop{=}_{k/q \to \infty} e^{i\theta} \langle k/q \rangle^s + \text{c.c.} + O(k/q)^2
$$

$$
k^2 d(k) \mathop{=}_{kR_* \to 0} e^{i \theta >} (kR_*)^s + \text{c.c.} + O(kR_*)
$$

HOW TO SOLVE ?

 $E < 0, R_* = 0$:

• Fourier transform the real space Efimov solution

 $E = 0, R_* > 0$ (Gogolin, Mora, Egger, 2008):

• integral term is scaling invariant. Change of variable $x =$ $ln(kR_{*}\cos\nu)$ [where $\nu = \arcsin \frac{\alpha}{1+\alpha}$ is mass angle] makes it translationally invariant: setting $k^2 d(k) = F(x)$,

$$
0 = (1 + e^x)F(x) + (K * F)(x)
$$

 \bullet Fourier transform with respect to x :

$$
0=\tilde{F}(S{+}i)+\Lambda_l(iS,\alpha)\tilde{F}(S)
$$

• Infinite product representation of $s \mapsto \Lambda_l(s)$ over its roots and poles. Then solution for $\tilde{F}(S)$ is an infinite product of ratios of Γ functions $[\Gamma(z+1) = z\Gamma(z)]$

THE ANALYTICAL RESULTS

Exact value of the global energy scale:

$$
E^{(l)}_{\rm glob}=-\frac{2\hbar^2}{\mu R_*^2}e^{2\theta_l/|s_l|}\equiv -\frac{\hbar^2 q^{(l)2}_{\rm glob}}{2\mu}
$$

 $\theta_l = {\rm Im}[\ln\Gamma(1+s_l){\rm +ln}\,\Gamma(1{+}2s_l){\rm +2}\ln\Gamma(l{+}1{-}s_l){\rm +ln}\,\Gamma(l{+}2{-}s_l)]$ $+$ $\int_0^{|s_l}$ | $dS\ln\,\left|\,\Lambda_l(iS,\alpha)\right.$ $\begin{bmatrix} \end{bmatrix}$ $S^2 + (l + 1)^2$ $S^2 - |s_l$ | 2 $\frac{1}{\sqrt{2}}$ $+\sum$ k \geq 1 $(-1)^k B_{2k}$ $(2k)!$ d^{2k-1} $\overline{dS^{2k-1}}$ $\Biggl\{ \ln$ $\begin{bmatrix} \end{bmatrix}$ $\Lambda_{\bm l}(iS,\alpha)$ $S^2+(l+1)^2$ S^2-S^2 $\left.\frac{1}{2}^{2}\right]\bigg\} _{S}$ $=$ $|s_l\>$ |

N.B. It is an excellent approximation to neglect the sum over k

The global energy scale has ^a finite limit at threshold:

$$
\theta_l/|s_l| \underset{\alpha \to \alpha_c^{(l)}}{\to} 3\psi(1) - 2\psi(l+1) - \psi(l+2) \\ + \sum_j [\psi(x_j) + \psi(1+x_j) - \psi(l+1+2j) - \psi(l+2+2j)]
$$

where $\psi(x)=\Gamma'(x)/\Gamma(x)$ is the digamma function and the sum is taken over the positive roots of $\Lambda_l(x,\alpha)$ (l) $\binom{v}{c}$

$$
q_{\text{global}}^{(l=1)}R_{*} \simeq 6.56577 \cdot 10^{-2}, q_{\text{global}}^{(l=3)}R_{*} \simeq 6.12349 \cdot 10^{-3}
$$

$$
q_{\text{global}}^{(l=5)}R_{*} \simeq 1.62809 \cdot 10^{-3}, q_{\text{global}}^{(l=7)}R_{*} \simeq 6.48952 \cdot 10^{-4}
$$

$$
q_{\text{glob}}^{(l)}R_{*}|_{\text{threshold}} \simeq \frac{1+W(1)}{(l+\frac{1}{2})^{3}}e^{-3\gamma}
$$

where W is the Lambert function and γ is Euler's constant

A NUMERICAL STUDY: BEYOND THE GEOMETRIC SPECTRUM

Solid line: numerical. Dashed line: asymptotic formula ${\rm common\ to\ } (E < 0, R_*=0) \ {\rm and\ } (E=0, R_*>0) \ {\rm analytical}$ solutions. Vertical dotted lines: borders of the matching interval. N.B. $n=1$ is indeed the ground trimer state.

Relative deviations from geometric spectrum

- \bullet at fixed $\alpha, \rightarrow 0$ if $n \rightarrow \infty$
- \bullet at fixed $n, \rightarrow 0$ if $\alpha \rightarrow \alpha$ (l) \boldsymbol{c}

CONCLUSION

- 2 + 1 fermionic problem, mass ratio α , narrow Feshbach resonance
- at each Efimov threshold (of odd angular momentum l), the corresponding trimer spectrum is entirely geometric:

$$
E_n^{(l)}\underset{\alpha\rightarrow\alpha_c^{(l)+}}{\sim}E_{\mathrm{glob}}^{(l)}e^{-2\pi n/|s_l|}\ \ \forall n\geq1
$$

where the ground state trimer is $n = 1$

- the exact expression of $E_{\text{glob}}^{(l)}$ shows that it has a finite and non-zero limit at threshold
- opposite limit $\alpha \rightarrow +\infty$: spectrum becomes hydrogenoid

$$
E_n^{(l)}\underset{\alpha\rightarrow\infty}{\sim}-\frac{\hbar^2\alpha}{16\mu R_*^2}(n+l)^2
$$

as predicted by the Born-Oppenheimer approximation