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Beyond the “Zero-Range Efimov

Theory”

“Standard” Efimov
scenario:

Three identical bosons
with zero-range contact
interactions:

1/4
-IEl

- /] |1/2
s1on(as) a

* Most generally: Where do we
see discrete scale invariance?

* Realistic interactions
(understanding the three-body
parameter; structural
properties).

* BBB system under (partial)
confinement/mixed dimensions.

* Unequal masses/different
statistics (BBX, FFX).

* More particles.



Size of van der Waals Trimer as a

Function of Inverse Scattering Length

He-He potential [JCP 136, 224303 (2012)]
+ overall scaling factor.

a_=-834a0 “true”

(R, )%=
[Z,(r;)?] | 3172

Universal
theory:
K.=-1.56(5)/a_

This yields:
0.0323/a,
0.0424/a,

Calculation:
0.0439/a,
0.0426/a,

a=-48.31a,

alr,y,=-9.796

a_/rvdw='1 66 _ helium
(a/ry4y)/22.694=-7.30 (iers
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Objectives of This Talk:

“Standard” Efimov
scenario:

Three identical bosons
with zero-range contact
interactions:

0

1/4
-IEl

. 1/2
sign(a ) / IaSI

* Efimov scenario for B
system:

* How do the N-body
energies depend on the
regularization in the three-
body sector?

* Efimov scenario for B X
system (specifically, CsyLi):

* Do four-body states exist
that are universally tied to
CsCsLi Efimov states?

» |f so, where do the four-
atom resonances lie relative
to the three-atom
resonances?



Want to Go Beyond N=3:

“Standard” Efimov
scenario:

Three identical bosons
with zero-range contact
interactions:

0

1/4
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. /] |1/2
51cn(as) a

Ideally: Solve the N-body problem
with two-body ZR interactions
analytically...

Treat N-body resonance states

[for N=4, Deltuva, Few-Body Syst.
54, 569 (2013); for N=5 and 6, von
Stecher, PRL 107, 200402 (2011)].

Treat the ground state using FR
two-body potentials and “correct”
for non-universal effects
(Gattobigio/Kievsky).

Analyze noise (Nicholson).

Make T, close to universal using
repulsive three-body force [von
Stecher, JPB 43, 101002 (2010)].



E, for N Bosons (a.,=«): “Universal”

Energy Predictions from the Literature

200 Pairwise Gaussian:
- L B 'dat'tq'biéié ' l__ E, ~ N? (non-universal).

ny : PRA 90, 013620 (2014).
pairwise & Kirevsky

Gaussian ) Gattobigio & Kievsky:
finite-range corrections
-1 included (E, made to
match Deltuva result).
PRA 90, 010101(R)

=1 (2014).

150

This talk:

Monte Carlo calculations for two-body ZR
interactions and different regularizations in
three-body sector.



BBB (a.,=«): Two-Body ZR Interactions

* Hyperangular equation can be solved V(R)HC
analytically (yields s, value).
* Hyperradial equation can be solved 3
analytically.
~ 6 T 7 T 7 T T T T T =
/ o
g le-O5p o -
Energy ratio of < °
ground state (n=1) s le-10f= o -
and first excited 2 le1sk o |
state (n=2) deviates m o
by ~0.11% from = 1e-20f o -
universal energy = © .
spacing (<1 out of ] P T T T TR S

515) 0 2 -+ 6 8 10



BBB (a.,=«): Two-Body ZR Interactions
and Three-Body Powerlaw Potential

516-———'————'—3—{,—0—;—0--&-- HC V(R)=Ck/Rk
I °~ ZR Efimov |
R theory - C, sets the
= : : energy scale
o s1obk -
. For large k, the three-body
. | (al) 1 powerlaw potential behaves
510 - - - ;
15 04— like the hardcore potential.
————- ame—e === For k=2, the powerlaw
© ~51503F o 4 potential “modifies” s,
= (does not regularize...).
o ! 1
51502 o v 1 For k~3-4, we see some
P T deviations from universal
4 L 12 energy ratio for n=2 and 1.



BBB (a.,=«): Two-Body FR Interactions
LTI ‘Body G ian Potential

Range R, of repulsive three-body Gaussian is fixed.
Range r, of attractive two-body Gaussian is varied.

Trimer much, _

This is where
much larger

Gattobigio = & |
etal. work. " "Uf |[“medium ry” thanr, and R,.
Trimer size _

S

<R> = 2.66r,. 1"
RZ=[Z,(r;;)°1/3

“small r,”

0 1 > 3 A 5

A small repulsive three-body Vol Eg
potential affects the ground and excited states differently.



a.=~: Two-Body ZR Interactions and
Three-Body Powerlaw Potential

* What happens in the N-body N=*+
sector for different three-body | [ "ZREfimov]
powerlaw potentials? s 7 theory

* Restrict ourselves to N-body I
ground states. 4 k8 12

* Calculate E(V/E;).

HC

We use the Path Integral Monte Carlo (PIMC)
approach, extrapolated to zero temperature, to
treat N-body system: Pair approximation with
analytical two-body zero-range propagator.




Benchmarking the Two-Body Zero-
Range Propagator

* Two-body propagator calculated analytically for 1d and

3d systems (harmonically trapped or free space).
* Can be used in real or imaginary time evolution.

* We have primarily used it in applications where
imaginary time is identified with inverse T.

* Example: Pair distribution function for harmonlcally

trapped three-boson system.

Infinitely large a,
and three-body C¢/R°®
powerlaw potential.




E, for N Bosons (a.,=«): “Universal”

Energy Predictions from the Literature _

Pairwise Gaussian:

200 | | || | | | | | | | | | |
T T T T T T T Gattgbigid T T ] En~ N2
A & Kievsk
150 paIrWISIe // y - Gattoblglo &
Gaussian / ] Kievsky (next talk):

finite-range correc-
tions included (E,
made to match

- Deltuva result).

Our work:

Monte Carlo calculations for two-body ZR
interactions and different regularizations in
three-body sector.



E\ (a;=«): Two-Body ZR Interactions

and Three-Body Powerlaw Potential

60 I ] I 1 I /7! L

10

Purely repulsive three-body powerlaw potential: V(R)=C,/Rk.

As N increases, the dependence of the N-body energy on the
power of the repulsive three-body potential increases.

For large N, the larger k energies deviate notably from hardcore
DMC energies (dash-dotted line).



Hyperradial Density for N Bosons

Three-body powerlaw potential with k=6. N-body hyperradius
R%=[Z;4(r;)?] / N. K is the three-body binding momentum.

3 | | I | | I | | I | |

N=3 distribution is
broadest.

N-body hyperradial
density becomes
more compact

and moves to
larger R.

0 0.5 1 1.5 2
KR

1/k = 16.4L;, where L, is length scale of three-body
powerlaw potential, L= (mC/h?)"4.



Radial Density (a,=«):

2000

v 1500

K

1000

41 p(r) /

500

Note: The errorbars are non-negligible.

Radial density
normalized to
number of

particles.

Radial peak
density saturates
around N=10-15.

The peak density
for N=15is 3
times larger than
peak density for
N=3.



Midway St_lmmary (a;==): N Identical
°* N-body energies show notable dependence on how the
three-body system is reqgularized (we looked at different

repulsive powerlaw potentials in hyperradius of three-
body subsystems).

* Radial peak density, normalized to number of particles,
saturates around N=10-15 for k=6.

* Also monitored hyperradial density, two- and three-body
correlations,...

* Conclusion: To see “truly” universal behavior, need to go
to N-body states tied to excited Efimov trimer?



Unequal Masses:

B, X System with Large Mass Ratio

* Recent experiments by the Chicago (arXiv:1402.5943) and
Heidelberg [PRL 112, 250404 (2014)] groups on CsLi
mixture measure three-atom resonances.

* |deal Efimov scenario: 3
= Two large s-wave scattering lengths. =

= Scaling factor of 23.669 for mass ratio 133/6 as opposed
to 515.035 for BBB system.

* Provided three-body parameter is fixed, what happens in
the B X sector?

= Number of four-body bound states, if any, that are tied
to B, X trimer?

* Four-atom resonances?
* When does four-body state hit trimer state?



BBB versus BBX (a.=«): ZR Two-Body
and HC Three-Body Potential

The amplitude

— 1 . . . :
i ' ' of the hyperradial

— o density in the “inner
CS.: 0ol o nBBX _| lobe” is larger for

< BBX than for BBB.
= N More favorable (i.e.,
5" 1e-06 - ° o - smaller) energy level
= BBB - | spacing introduces
g o new computational
Sl le-09¢ : ' L L challenge...

BBB: ~0.11% _
BBX: ~1_9%0 BBX calculations are

for CsLi mass ratio.




BBX (a;,=«): Gaussian Two-Body and
Gaussian Three-Body Potential

Three-body repulsive Gaussian: Range R, is fixed and
height V, is varied (below R? ~ Z.(r;)%; not hyperradius...).
Range and depth of attractive two-body Gaussian are

fixed.
25 —————1— : :
_.—I .‘j!‘lm'm'r __________ &
af 20
= 7| *explicitly correlated
=  Gaussian basis set
[ ]
’ 1 |
15% 2 4 10

(EOIpb)
E, /E,

25

N )
(3N =
— '

3%
[\8]

_ _HC in hyperradius)
' ZR Efimov |
theory
0 2 4 6 3 10
V/ESr

Calculations are
for 133/6 (CsLli)
mass ratio.




Expand Wave Function in Basis:

Explicitly Correlated Gaussians

= Basis functions:

Simple Gaussian @, (x) = exp(-)_(TA(k)yZI)

Sum over interparticle
distances: = -(r;/d;)?/ 2

Total wave fct.:

J\rbas is

U= > ¢ S0x)

k=1

x collectively denotes N-1 Jacobi coordinates.
A denotes (N-1)x(N-1) dimensional parameter matrix.

Use physical insight to choose d; efficiently.

See Suzuki
and Varga

For each basis function ¢, (L"™=0*), we have N(N-1)/2 parameters.
For N=4, N, _.,.=1000, L"=0*: 6000 non-linear variational parameters.




Explicitly Correlated Gaussian and

Semi-Stachastic Variational 2 |

Approach is powerful for

Hamiltonian matrix can be evaluated
semi-analytically.

Rigorous upper bound for energy
(“controlled accuracy”).

Matrix elements for structural
properties can be calculated
analytically.

Computational effort increases with

number of atoms N:

= Evaluation of Hamiltonian matrix
elements involves diagonalizing
(N-1)x(N-1) matrix.

= Number of permutations N, scales
non- Ilnearly (N,=0, 4, 36, 576 .. for
FF’, 2F2F’, 3F3F 4F4F’,.
systems)

certain few-body
problems:

Harmonically trapped 8

particle system (4 spin-up
and 4 spin-down fermions)
at unitarity as a function of

range of two-body

Gaussian.

109 T T T T T

Yin and Blume
(preliminary)

10.8}- °

107} ¢

E(4 ,4)/ Eho

| X
10.6F Mulkerin et al.,
PRA 90 023626 (2014)

10.5

O 007 004 006 008
r/a

|
0.1




BBX (as=°_°) with Mass Ratio 133/6:

Hyperradial Density

ZR Efimov theory

2b FR + 3b Gaussian:
ground state

2b FR + 3b Gaussian:
1. excited state

0 2 4
Binding momentum (exc. K, R
state energies are made — —
to agree). Convincing agreement...



Cs,Li (a,=«): Gaussian Two-Body and
Three-body repulsive Gaussian: Range R, is fixed and
height V, is varied.

Range and depth of attractive two-body Gaussian are
fixed.

Fo4ur-!oody ground state:  Four-body excited state:

1.04n
g
1.03}F
=7 S A _
= e — *® ¢ ¢ ¢ coe, °
~ = 102} 1
:' 000000000 0000 ) :!
= i
[.L] 2'. - m
101
1 1 » 1 2 1 2 1 2 1 2 1 1 M 1 M 1 2 I‘ 2 1 2
0 2 4 6 8 10 0 2 4 6 8 1(
V /E V /E



CsCs distance CsLi distance
r 0.15 r

== 0O

Pair distribution: 0.1

Likelihood of finding
two particles at
distance r from each
other.

Distributions for
Cs,Li ground state , _
resemble those of 01 . 200750
Li . . -
Cs,Li ground state _ Cs,Li* | 005

| 005

Distributions for 0.025

Cs,Li* excited state 0
are broader.

(K;('))'l t* P(r)
O
o
=




Generalized Efimov Scenario for CsLi

Mixture

12
)

Sr

| E

z-0.04

«(E

Energy ratios
2.28 and 1.02

-0.02F

-0.06

-0.05

|
-0.025

Two tetramer
states.



Generalized Efimov Scenario for CsLi

Energy ratios
2 28 and 1.02 Two tetramer
states.
0
o -0.02f
m” I More weakly-
~— -~
7 -0.04 bound tetramer
g X becomes
006k unbound on
, : , : s positive
-0.05 -0.025 (/) 0.025 0.05 scattering
T a

0" %s length side.



Generalized Efimov Scenario for CsLi

Mixture

1,2
a(1’_1) (1,2)

4

Energy ratios

-0.02-

112
)

Sr
1

| E

z-0.04F

«(E

-0.06

Te1,1".

l ’ h 2" 2.28 and 1.02
3,-
Or— :

-0.05

Fairly similar to equal boson case...

|
-0.025

Ty

|
0
/

a
s

0.05

Two tetramer
states:

a, '~ 0.55a."

“ 22 0. 91a“’

__ More weakly-

bound tetramer
becomes
unbound on
positive
scattering
length side.



Summary

* Unequal-mass Cs,Li system (see arXiv:1410.2314):
= Two four-body states tied to Cs,Li trimer.

* Four-atom resonance position of weakly-bound state
Is close to three-atom resonance position.

* B, system at unitarity:
= Dependence of system properties on three-body
regulator.
= Structural properties of Bose droplet.

* Next step: Look at N-body states tied to excited Efimov
trimers.

* Developed two-body zero-range propagator suitable for
use in continuum Monte Carlo simulations.



