

Extended Efimov scenario: Boson droplets without and with an impurity

Doerte Blume and Yangqian Yan Dept. of Physics and Astronomy, Washington State University, Pullman

Supported by the NSF.

Beyond the "Zero-Range Efimov Theory"

"Standard" Efimov scenario: Three identical bosons with zero-range contact interactions:

- **Most generally: Where do we see discrete scale invariance?**
- **Realistic interactions (understanding the three-body parameter; structural properties).**
- **BBB system under (partial) confinement/mixed dimensions.**
- **Unequal masses/different statistics (BBX, FFX).**
- **More particles.**

Size of van der Waals Trimer as a Function of Inverse Scattering Length

Objectives of This Talk: Extended/Generalized Efimov Scenario

"Standard" Efimov scenario: Three identical bosons with zero-range contact interactions:

Efimov scenario for B_N system:

- § **How do the N-body energies depend on the regularization in the threebody sector?**
- **Efimov scenario for B_NX** system (specifically, Cs_NLi):
	- § **Do four-body states exist that are universally tied to CsCsLi Efimov states?**
	- **F** If so, where do the four**atom resonances lie relative to the three-atom resonances?**

Want to Go Beyond N=3: Possible Approaches…

"Standard" Efimov scenario: Three identical bosons with zero-range contact interactions:

Ideally: Solve the N-body problem with two-body ZR interactions analytically...

Treat N-body resonance states [for N=4, Deltuva, Few-Body Syst. 54, 569 (2013); for N=5 and 6, von Stecher, PRL 107, 200402 (2011)].

Treat the ground state using FR two-body potentials and "correct" for non-universal effects (Gattobigio/Kievsky).

Analyze noise (Nicholson).

Make T₁ close to universal using repulsive three-body force [von Stecher, JPB 43, 101002 (2010)].

EN for N Bosons (as =∞): "Universal" Energy Predictions from the Literature

Pairwise Gaussian: $E_N \sim N^2$ (non-universal). **PRA 90, 013620 (2014).**

Gattobigio & Kievsky: finite-range corrections included (E₄ made to **match Deltuva result). PRA 90, 010101(R) (2014).**

Nicholson (noise): $E_N = E_4 N/2(N/2-1)/2.$ **PRL 109, 073002 (2012)**

von Stecher: DMC results for 3b HC. JPB 43, 101002 (2010).

This talk:

Monte Carlo calculations for two-body ZR interactions and different regularizations in three-body sector.

BBB (a_s=∞): Two-Body ZR Interactions **and Three-Body Hardcore Potential**

- **Hyperangular equation can be solved** analytically (yields s₀ value).
- **Hyperradial equation can be solved analytically. ^R**

Energy ratio of ground state (n=1) and first excited state (n=2) deviates by ~0.11% from universal energy spacing (<1 out of 515)

BBB (a_s =∞): Two-Body ZR Interactions **and Three-Body Powerlaw Potential**

 HC $|V(R)=C_k/R^k$ C_k sets the **energy scale**

> **For large k, the three-body powerlaw potential behaves like the hardcore potential.**

For k=2, the powerlaw potential "modifies" s₀ **(does not regularize…).**

For k~3-4, we see some deviations from universal energy ratio for n=2 and 1.

BBB (a_s=∞): Two-Body FR Interactions **and Three-Body Gaussian Potential**

Range R₀ of repulsive three-body Gaussian is fixed. Range r₀ of attractive two-body Gaussian is varied.

as =∞: Two-Body ZR Interactions and Three-Body Powerlaw Potential

- **What happens in the N-body sector for different three-body powerlaw potentials?**
- **Restrict ourselves to N-body ground states.**
- Calculate $E_N^{(1)}/E_3^{(1)}$.

We use the Path Integral Monte Carlo (PIMC) approach, extrapolated to zero temperature, to treat N-body system: Pair approximation with analytical two-body zero-range propagator.

Benchmarking the Two-Body Zero-Range Propagator

- **Two-body propagator calculated analytically for 1d and 3d systems (harmonically trapped or free space).**
- **Can be used in real or imaginary time evolution.**
- **We have primarily used it in applications where imaginary time is identified with inverse T.**
- **Example: Pair distribution function for harmonically**

Infinitely large as and three-body C₆/R⁶ **powerlaw potential.**

EN for N Bosons (as =∞): "Universal" Energy Predictions from the Literature

Pairwise Gaussian: $E_N \sim N^2$.

Gattobigio & Kievsky (next talk): finite-range corrections included (E4 made to match Deltuva result).

Nicholson (noise): $E_N = E_4 N/2(N/2-1)/2$.

von Stecher: DMC results for threebody HC.

Our work:

Monte Carlo calculations for two-body ZR interactions and different regularizations in three-body sector.

EN (as =∞): Two-Body ZR Interactions and Three-Body Powerlaw Potential

Purely repulsive three-body powerlaw potential: $V(R)=C_k/R^k$.

As N increases, the dependence of the N-body energy on the power of the repulsive three-body potential increases.

For large N, the larger k energies deviate notably from hardcore DMC energies (dash-dotted line).

Hyperradial Density for N Bosons (as =∞)

Three-body powerlaw potential with k=6. N-body hyperradius $R^2 = [\Sigma_{i \le i} (r_{ii})^2] / N$. **K** is the three-body binding momentum.

 $1/\kappa$ = 16.4L₆, where L₆ is length scale of three-body **powerlaw potential,** $L_6 = (mC_6/\hbar^2)^{1/4}$ **.**

Radial Density (a_s=∞): k=6 Three-Body Powerlaw Potential

Note: The errorbars are non-negligible. N=3.

times larger than peak density for

Midway Summary (as =∞): N Identical Bosons with Two-Body ZR Interactions

- **N-body energies show notable dependence on how the three-body system is regularized (we looked at different repulsive powerlaw potentials in hyperradius of threebody subsystems).**
- **Radial peak density, normalized to number of particles, saturates around N=10-15 for k=6.**
- **Also monitored hyperradial density, two- and three-body correlations,…**
- **Conclusion: To see "truly" universal behavior, need to go to N-body states tied to excited Efimov trimer?**

Unequal Masses: B_NX System with Large Mass Ratio

- **Recent experiments by the Chicago (arXiv:1402.5943) and Heidelberg [PRL 112, 250404 (2014)] groups on CsLi mixture measure three-atom resonances.**
- **Ideal Efimov scenario:**
	- § **Two large s-wave scattering lengths.**
	- § **Scaling factor of 23.669 for mass ratio 133/6 as opposed to 515.035 for BBB system.**

as

as

- **Provided three-body parameter is fixed, what happens in** the B_NX sector?
	- § **Number of four-body bound states, if any, that are tied** to B₂X trimer?
	- § **Four-atom resonances?**
	- § **When does four-body state hit trimer state?**

BBB versus BBX (a_s=∞): ZR Two-Body and HC Three-Body Potential

BBX (a_s=∞): Gaussian Two-Body and **Gaussian Three-Body Potential**

Three-body repulsive Gaussian: Range R₀ is fixed and **height V₀ is varied (below R² ~** $\Sigma_{i\leq i}(r_{ii})^2$ **; not hyperradius...). Range and depth of attractive two-body Gaussian are fixed.**

Expand Wave Function in Basis: Explicitly Correlated Gaussians

- **x** collectively denotes N-1 Jacobi coordinates.
- § **A denotes (N-1)x(N-1) dimensional parameter matrix.**
- Use physical insight to choose d_{ii} efficiently.
- § **For each basis function** ϕ**k (L**Π**=0+), we have N(N-1)/2 parameters.**
- For N=4, N_{basis}=1000, L[∏]=0⁺: 6000 non-linear variational parameters.

Explicitly Correlated Gaussian and Semi-Stochastic Variational Approach

Hamiltonian matrix can be evaluated semi-analytically.

Rigorous upper bound for energy ("**controlled accuracy**"**).**

Matrix elements for structural properties can be calculated analytically.

Computational effort increases with number of atoms N:

- § **Evaluation of Hamiltonian matrix elements involves diagonalizing (N-1)x(N-1) matrix.**
- Number of permutations N_p scales **non-linearly (N_p=0, 4, 36, 576,... for FF**'**, 2F2F**'**, 3F3F**'**, 4F4F',… systems).**

Approach is powerful for certain few-body problems:

Harmonically trapped 8 particle system (4 spin-up and 4 spin-down fermions) at unitarity as a function of range of two-body Gaussian.

BBX (a_s =∞) with Mass Ratio 133/6: Hyperradial Density

Cs₃Li (a_s=∞): Gaussian Two-Body and **Gaussian Three-Body Potential**

Three-body repulsive Gaussian: Range R₀ is fixed and height V₀ is varied.

Range and depth of attractive two-body Gaussian are fixed.

CsNLi (as =∞)

Pair distribution: Likelihood of finding two particles at distance r from each other.

Distributions for Cs₃Li ground state **resemble those of** Cs₂Li ground state.

Distributions for Cs₃Li* excited state **are broader.**

Generalized Efimov Scenario for CsLi Mixture

Generalized Efimov Scenario for CsLi Mixture

Generalized Efimov Scenario for CsLi Mixture

Fairly similar to equal boson case…

 $a_{4,-}^{(1,1)} \sim 0.55 a_{3,-}^{(1)}$ $a_{4,-}^{(1,2)} \sim 0.91 a_{3,-}^{(1)}$ **More weaklybound tetramer becomes unbound on positive** $(1,1)$ **O EE** (1)

states:

scattering length side.

Summary

- Unequal-mass Cs₃Li system (see arXiv:1410.2314):
	- Two four-body states tied to Cs₂Li trimer.
	- § **Four-atom resonance position of weakly-bound state is close to three-atom resonance position.**

• B_N system at unitarity:

- § **Dependence of system properties on three-body regulator.**
- § **Structural properties of Bose droplet.**
- § **Next step: Look at N-body states tied to excited Efimov trimers.**
- **Developed two-body zero-range propagator suitable for use in continuum Monte Carlo simulations.**