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We report a bound state of the one-dimensional two-particle (bosonic or fermionic) Hubbard model

with an impurity potential. This state has the Bethe-ansatz form, although the model is nonintegrable.

Moreover, for a wide region in parameter space, its energy is located in the continuum band. A remarkable

advantage of this state with respect to similar states in other systems is the simple analytical form of the

wave function and eigenvalue. This state can be tuned in and out of the continuum continuously.
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Awidespread preconception in quantummechanics is that
a normalizable (bound) state cannot be degenerate in energy
with a non-normalizable (extended) state. Generically, this is
indeed the case: As argued by Mott in favor of the existence
of sharp mobility edges [1], degeneracy between a localized
and an extended state would be unstable against an infini-
tesimal perturbation which can convert the localized state
into an extended one. However, as pointed out by von
Neumann and Wigner as early as in 1929 [2], the so-called
bound state in the continuum (BIC), which is localized in
space yet whose energy falls in the continuum band, does
exist. Notably, von Neumann and Wigner had a simple,
beautiful algorithm to construct such an exotic state together
with the corresponding potential. They prescribed the state
first and then sought an appropriate potential supporting it
[2,3]. Of course, despite its simplicity in proof of concept,
this strategy has the disadvantage that it is the state that
determines the potential, not vice versa. Moreover, the po-
tential turns out to be rather complicated and not intuitive.

It was almost forty years after vonNeumann andWigner’s
original work that the concept of BIC surfaced again. This
time, Stillinger argued that BICs can exist in a two-electron
atom [4] but not for physically relevant parameters. The first
attempt to realize a BIC experimentally was taken by
Capasso et al. [5]. More recently, BICs have been demon-
strated experimentally in photonics [6,7] using the analogy
between optical systems and quantum mechanics, and they
are also theoretically predicted to exist in some other systems
[8–13]. In spite of this progress, we note that BICs are fragile
objects in general, and so far they have been found or
engineered only in few systems. Some of them are simply
protected by symmetry [7], or rely on separation of variables
[14,15], or are constructed by the von Neumann–Wigner
algorithm [13]. These BICs appear therefore somewhat
artificial [16].

In this Letter, we report the discovery of a BIC in a one-
dimensional two-particle (bosonic or fermionic) Hubbard
model with an impurity potential. Here, the model and the
BIC have several desirable features in comparison with

previous models and the associated BICs. First, the model
is much simpler (with short-range interaction and poten-
tial) yet nontrival and, most importantly, not artificial, in
contrast to many of the constructions above. Second,
though this model was believed to be nonintegrable, we
show that half of the eigenstates have the Bethe-ansatz
form. They are distinguished from the diffractive states by
a Z2 symmetry of the model: the Bethe (nondiffractive)
states are odd under this symmetry, whereas the others are
even. Some of the former are bound states, among them the
BIC. This leads to simple, explicit expressions of its wave
function and eigenvalue, from which we see that the BIC
can be tuned in and out of the continuum band by varying
the model parameters.
Themodelwe investigate consists of two identical spinless

bosons (or two spin- 12 fermions in the spin singlet space) in a

one-dimensional infinite lattice. A defect is located at x ¼ 0,
leading to a local potential V. The two particles interact
through an on-site interactionU. The (orbital) wave function
of the two particles is denoted as fðx1; x2Þ, with �1 �
x1;2 � þ1 being integers. The exchange symmetry requires

fðx1; x2Þ ¼ fðx2; x1Þ. The Hamiltonian is defined by its
action on a wave function,

Hfðx1; x2Þ ¼ � X
�¼�1

½fðx1 þ �; x2Þ þ fðx1; x2 þ �Þ�

þ ½Vð�x1;0 þ �x2;0Þ þU�x1;x2�fðx1; x2Þ: (1)

Here, V < 0 [17] is the value of the impurity potential while
U is the on-site interaction between the two particles, with
the hopping strength set to unity. It should be stressed that in
the absence of impurity potential or particle-particle interac-
tion the model is solvable. However, in the presence of both
impurity and interaction, it becomes nonintegrable even in
the two-particle sector.
We aim to solve the eigenvalues and eigenstates of this

system and especially the bound states, i.e., states in which
both particles are localized in the vicinity of the impurity.
To demonstrate that one of the bound states lies in the
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continuum, we have to obtain an overview of the extended
states and identify the three continuum bands associated.
This classification can be verified numerically using a finite
size system (see Fig. 1). The first band corresponds to two
particles that are neither captured by the impurity nor
bound together by the interaction between them. The im-
purity and interaction cause phase shifts but do not con-
tribute to the energy of the state, which is just the sum of
the kinetic energy of both particles, and thus, this band
covers the interval [� 4, þ4]. For the second band, one
particle is captured by the impurity, but the other is not.

The energy of the first particle is� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
[18] while that

of the other lies between �2 and 2. This band covers

therefore [� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p � 2, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p þ 2]. The third
band corresponds to a delocalized molecule state [19].
That is, the two particles are bound together by the inter-
action between them, and the composite moves as a whole
on the lattice. The impurity causes phase shifts or local
modifications on the wave function but does not contribute

to the energy. This band covers [� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 16

p
, U] if U < 0

or [U,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 16

p
] if U > 0 [19].

The presence of these three bands can be demonstrated
numerically by using some quantities which reveal the
distinct nature of the extended states. The first quantity is
the sum of the distance of the two particles to the defect,
D ¼ jx1j þ jx2j. Suppose we choose a lattice of 2N þ 1
sites withN sites on each side of the defect. For the first and
third bands, since the particles move through the lattice
either independently or bound together, hDi should be
�N. For the second band, since always one particle is
localized around the defect, hDi is expected to be �N=2.
The other quantity is the probability of finding at least
one particle outside of a ball of radius R and centered
at the defect. That is, PR

outðfÞ ¼
P

maxfjx1j;jx2jg>Rjfðx1; x2Þj2.
Suppose R ¼ N=2, it is easy to see that for the second and
third bands, PR

out should be �0:5, while for the first band it
should be �0:75. These predictions are readily verified
numerically. In Fig. 1, we see how the three bands, although

overlapping in energy, are separated by using D and PR
out

[20]. Moreover, their band edges coincide with the predicted
values.
The impurity potential and the interaction between the

two particles are effective only on the three lines of x1;2 ¼ 0
and x1 ¼ x2. Away from these lines, we have free particles.
This observation motivates a Bethe-type ansatz for the
eigenstates, which are characterized by just two parameters,
k1 and k2. Specifically, in region I1 (0 � x1 � x2) in Fig. 2,
the wave function is postulated to read

fðx1; x2Þ ¼
X

�0¼0;1

X
�1¼0;1

X
�2¼0;1

Ahð�0;�1;�2Þ exp½ið�Þ�1k1x1þ�0

þ ið�Þ�2k2x2��0
�; (2)

where hð�0; �1; �2Þ � 4�0 þ 2�1 þ �2 þ 1. The wave
function in regions I2 and I3 is defined similarly but with
the A’s replaced by B’s and C’s, respectively. The value of
the wave function in the other three regions is determined
by the condition fðx1; x2Þ ¼ fðx2; x1Þ. In each region, we
have eight different plane waves. The reason is that the
interaction between the two particles can exchange their
momenta, and the impurity potential can reverse the mo-
mentum of a particle. Finally, one should keep in mind that
k1;2 may be complex as below.

With the wave function in the form above, the eigen-
value equationHf ¼ Ef, with E ¼ �2 cosk1 � 2 cosk2, is
satisfied away from the three lines. Nowwe need to fulfill it
also on the three lines. Together with the requirement that f
be single valued on these lines one obtains a set of 24
homogeneous linear equations in 24 unknowns Aj, Bk, Cl,

j; k; l ¼ 1 . . . 8 (see Supplemental Material [21]). The
24� 24 coefficient matrix, which depends on U, V, and
k1;2, needs to be, and is indeed, singular to admit nontrivial

solutions. However, instead of dealing with the 24� 24
matrix, we employ a simplification. Note that the
system is reflection invariant with respect to the impurity.

Defining ½T̂f�ðx1; x2Þ ¼ fð�x1;�x2Þ, we have T̂HT̂ ¼ H.
Therefore, we can classify the eigenstates into even and

odd ones with respect to the (parity) symmetry T̂. It turns

FIG. 1 (color online). The three continuum bands revealed by
using the two quantities of D ¼ jx1j þ jx2j and PR

out. The three
horizontal lines are clearly visible in each panel. The eigenstates
and eigenvalues En are solved by exact diagonalization on a
ð2N þ 1Þ-site (N ¼ 20) lattice and with open boundary condi-
tion. The values of the parameters are ðV;UÞ ¼ ð�1:5; 6Þ.

FIG. 2 (color online). The x1-x2 lattice decomposed into six
regions by the x1 axis, x2 axis, and x1 ¼ x2 line. Note that
adjacent regions share the boundary between them. Especially,
the origin belongs to all the six regions.
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out that the even-parity eigenstates (especially the ground
state) do not have the form of Eq. (2). However, the odd
ones do (see Supplemental Material [21]).

For the odd case, fðx1; x2Þ ¼ �fð�x1;�x2Þ, we need
Bi ¼ �B9�i and Ai ¼ �C9�i. It is readily verified that the
former implies the latter. In the end, the linking conditions
reduce to a set of homogeneous linear equations for
B1�i�4. The 4� 4 coefficient matrix is always singular
and has a two-dimensional nullspace (see Supplemental
Material [21]). The reason for the value of two is the time-
reversal symmetry of the Hamiltonian.

Here some remarks are necessary. Suppose we allow
both Bose and Fermi symmetry. Then Eq. (1) itself is
invariant under both the exchange of x1 $ x2 and the
reflection of x1;2 ! �x1;2. The two symmetries divide

the Hilbert space into four sectors. For the antisymmetric
(fermionic) sectors, the interaction is ineffective, and we
have virtually free fermions in an impurity potential. The
wave functions are in the Slater form and, hence, also in the
Bethe form. Therefore, only in one of the four sectors, i.e.,
the symmetric (bosonic) sector with even parity, the wave
functions do not have the Bethe form and are diffractive.
The occurrence of diffraction in a related model defined on
a continuous line was shown in the classic work by
McGuire [22]. The interesting point here is that the sym-

metry T̂ leads to a decomposition of the bosonic Hilbert
space into two subspaces of which one shows no diffrac-
tion and can be therefore considered integrable. This is
confirmed by an analysis of the algebra of scattering ma-
trices and the associated Yang-Baxter relations [23].

We now proceed to study the odd-parity localized states.
The exchange symmetry and the odd-parity condition to-
gether imply that the wave function is determined by its
value in regions I1 and I2. After some straightforward
calculation (see Supplemental Material [21]), it turns out
that the (unnormalized) wave function is of the form

fðx1; x2Þ ¼ eik1x1þik2x2 � e�ik2x1�ik1x2 (3)

in region I2 and

fðx1; x2Þ ¼ 2V �U

V �U
eik1x1þik2x2

� V

V �U
e�ik1x1þik2x2 � eik2x1�ik1x2 (4)

in region I1. Here, k1;2 need to satisfy the equations

V ¼ z2 � z�1
2 ; V �U ¼ z1 � z�1

1 ; (5)

and the inequalities jz2j<1<jz1j<jz2j�1, with z1;2¼eik1;2 .
Instead of studying for what kind of (V, U) pairs there are
solutions of z1;2 satisfying the inequalities, we work in-

versely. Because V < 0 by assumption, we have 0<z2<1.
Depending on the sign of z1, we have two cases:

(i) 0< z2 < 1< z1 < z�1
2 . We get 0<V �U ¼

z1 � z�1
1 < z�1

2 � z2 ¼ �V. That is, 2V <U < V < 0.

The energy of the wave function is Eb2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV �UÞ2 þ 4

p
. It is easy to prove that Eb2 <

f�4;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p � 2;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 16

p g. Consequently, this
bound state is below all the three continuum bands and is
thus not a BIC. A notable feature of this state is that on the
line x1 þ x2 ¼ 0, fðx1; x2Þ ¼ 0 and if x1 þ x2 > 0,
fðx1; x2Þ< 0 while if x1 þ x2 < 0, fðx1; x2Þ> 0. That is,
the wave function has a node line x1 þ x2 ¼ 0 and is
positive on one of the two half-planes, while negative on
the other. This property can be readily verified from the
expressions (3) and (4).
(ii) �z�1

2 < z1 <�1< 0< z2 < 1. We get 0>V �
U ¼ z1 � z�1

1 >�z�1
2 þ z2 ¼ V. That is, V < U < 0.

The eigenenergy of the wave function is

Eb1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV �UÞ2 þ 4

q
: (6)

Now, it is easy to show that 0> Eb1 > fU;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4

p
þ 2g,

and thus, Eb1 falls outside of (above) the second and third
band. But it can fall in the [� 4,þ4] continuumband to be an
embedded eigenvalue. For example, for ðV;UÞ ¼
ð�2;�0:5Þ, Eb1¼�0:3284, which is inside the [� 4, þ4]
continuum. The condition for this state to be a BIC is
Eb1 >�4. In Fig. 3, we have charted the regime where
this condition is fulfilled. Note that this bound state exists
whenever V < U < 0. However, only in a subset of this
regime does it fall in the continuum. Its energy can be tuned
continuously across the band edge.
In Fig. 4, we have plotted the squaredwave function of the

BIC for three sets of parameters. Therewe see that for a fixed
value of V, the localized state gets extended along the line of
x1 ¼ x2 [see Fig. 4(a)] as U ! 0�, while it gets extended
along the lines of x1 ¼ 0 and x2 ¼ 0 [see Fig. 4(c)] as
U!Vþ. This follows from jz1z2j!1, respectively jz1j!1
in the two limits. Similar behavior is displayed by the other
odd-parity bound state as U ! 2Vþ or V�, due to the same
reason. AsU crosses V from Vþ to V�, the first bound state

FIG. 3 (color online). In the region labeled with (ii)-BIC, the
statewith energyEb1 [see Eq. (6)] is a bound state embedded in the
[� 4, þ4] continuum. In the region labeled with (ii)-BOC, this
state is a bound state below the [� 4, þ4] continuum band and
outside of all the three continuum bands. The boundary between
the two regions is determined by the condition Eb1¼�4. In the
region labeled with (i), the odd-parity bound state with energy
Eb2 exists, which is below all the continuum bands.
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gets extended and disappears, while the second one appears
starting from an infinite size. However, the two states are not
continuously linked. Actually, from Eq. (5) we see that
V �U plays the role of an effective defect potential. As it
changes sign, z1 changes sign, and the bound state jumps
discontinuously from above the second band to below it.
Finally, it should be stressed that in contrast to the power-
law decay of the wave function in Ref. [2,3], here the wave
function decays exponentially as jx1;2j tend to infinity, as

seen in Eqs. (3) and (4).
In conclusion, we have demonstrated the existence of a

bound state in the continuum in a system of two interacting
particles in an impurity potential [24]. This discovery is
actually a by-product of an investigation of the following
well-motivated problem: For what value of U > 0 will the
(attractive) impurity potential no longer be able to bind the
two bosons? It turns out that in this simple yet nontrivial
problem a BIC appears, which is probably the simplest
nontrival BIC as far as the wave function and eigenvalue
are concerned. Moreover, it should be stressed that, unlike
most BICs studied before which are generally one-body
BICs, here we have a two-body BIC. In the future, it would
be interesting to consider also three-particle or many-
particle cases to see whether ‘‘partial integrability’’ persists
and many-body BICs of simple form are possible. Another
direction worth pursuing is the influence of the BIC on the
dynamics, e.g., the scattering properties, of the system [16].
Finally, it would be worthwhile to realize the BIC in some
system experimentally. A promising candidate is guiding
photonic structures [6,7,25–27]. Note that the model (1) can
also be interpreted as a single particle hopping on a two-
dimensional lattice, with potentials along three directions.
Therefore, it can be simulated using a two-dimensional
array of optical waveguides [25,26], where the hopping is
realized by the evanescent coupling between neighboring
waveguides, and by engineering the refractive index or
geometry of the waveguides, the potentials can be realized.
If the input of each waveguide is initialized according the

wave function of the BIC in Eqs. (3) and (4), the pattern
would propagate invariantly and thus prove the state as a
BIC. Here, it should be mentioned that, since in this setting it
is the propagation length that plays the role of time, it is
the propagation constant that should be interpreted as the
eigenenergy [7,25].
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