Exotic bound states and Bethe-ansatz solvability of a two-particle Hubbard model

Jiang-min Zhang (MPI-PKS, Dresden, Germany)

In collaboration with Daniel Braak and Marcus Kollar (Augsburg University)

Oct. 15, 2014

Outline

 \triangleright A simple two-particle Bose-Hubbard model

- \triangleright similar to the negative Hydrogen ion H⁻ problem
- \blacktriangleright a bound state in the continuum
- \blacktriangleright protected by integrability
- \blacktriangleright Bethe-ansatz
	- \triangleright only works for the odd-parity states!
	- \blacktriangleright half-integrable (in a loose sense)
- \triangleright A Bethe-form checking algorithm
	- \triangleright no diffraction in the odd-parity subspace
	- \blacktriangleright diffraction in the even-parity subspace
- \triangleright A simple but nontrivial scattering problem

A lattice version of the H[−] problem

The Hamiltonian (with only two particles):

$$
\hat{H} = \sum_{x=-\infty}^{+\infty} \left[-(\hat{a}_x^\dagger \hat{a}_{x+1} + \hat{a}_{x+1}^\dagger \hat{a}_x) + \frac{U}{2} \hat{a}_x^\dagger \hat{a}_x^\dagger \hat{a}_x \hat{a}_x \right] + V \hat{a}_0^\dagger \hat{a}_0.
$$

The motivation:

- \blacktriangleright How many bound states?
- Interplay of U and V

Numerics first (No expectation of integrability)

How to filter a bound state out of the (majority) extended states?

 \triangleright The ultimate criterion: a bound state, unlike an extended state, is insensitive to the boundary or boundary condition.

The algorithm:

- \triangleright solve the eigenstates by exact-diagonalization on a lattice of size M_1
- \triangleright for each eigenstate calculate the average of

$$
D = |x_1| + |x_2|
$$

 \blacktriangleright a difference:

 $\int D \to \text{const}, \quad \text{for a bound state},$ $D\propto M_1, \qquad$ for an extended state.

repeat the procedure on a larger lattice with $M_2 > M_1$; Bound states \Longleftrightarrow fixed D at fixed E

A weird bound state: embedded in the continuum!

An entity predicted by von Neumann $&$ Wigner, Phys. Z. 30, 465 (1929) \blacktriangleright admitted by theory:

$$
E\psi = [-\nabla^2 + V(r)]\psi \implies V(r) = E + \frac{\nabla^2 \psi}{\psi}, \quad || \psi || = 1
$$

- \blacktriangleright but not expected in real life!
- \triangleright omitted in possibly every textbook on quantum mechanics

Hidden integrability!

Bound-state-in-the-continuum is a non-generic object

Degeneracy between a localized state ψ_b and an extended state ψ_e is unstable.

$$
H_{subspace} = \begin{pmatrix} E & \delta \\ \delta & E \end{pmatrix}, \quad \delta \to 0.
$$

New eigenstates:

$$
\psi_{\pm} = \frac{1}{\sqrt{2}} (\psi_b \pm \psi_e).
$$

Both are now extended!

Mott's sharp mobility edges in a disordered lattice!

Bethe Ansatz

Configuration space

- ighthroup variables in $1D = \text{one}$ particle in 2D
- \blacktriangleright infinite lattice assumed

In region I_1 :

 $f = A_1 e^{+ik_1x_1+ik_2x_2} + A_2 e^{+ik_1x_1-ik_2x_2}$ $+A_3e^{-ik_1x_1+ik_2x_2}+A_4e^{-ik_1x_1-ik_2x_2}$ $+A_5e^{+ik_2x_1+ik_1x_2}+A_6e^{-ik_2x_1+ik_1x_2}$ $+A_7e^{+ik_2x_1-ik_1x_2}+A_8e^{-ik_2x_1-ik_1x_2}$

In regions I_2 and I_3 , A's replaced by B's and C 's.

Away from the interfaces:

$$
Hf = Ef, \quad E = -2(\cos k_1 + \cos k_2),
$$

already satisfied.

Linking the wave functions on the interfaces

A set of 24 linear equations about the 24 unknowns A 's, B 's, C 's.

- parametrized by k_1 and k_2
- \blacktriangleright homogeneous

Depending on the **parity** $(x_i \leftrightarrow -x_i)$:

 \blacktriangleright Even-parity,

$$
f(x_1, x_2) = +f(-x_1, -x_2),
$$

not self-consistent! Ansatz wrong!

 \triangleright Odd-parity,

$$
f(x_1, x_2) = -f(-x_1, -x_2),
$$

self-consistent!

A subtle fact missed by J. B. McGuire!

Two odd-parity bound states

Suppose $V < 0$ (The $V > 0$ case is similar):

If $2V < U < V$, there exists an odd-parity bound state

$$
E_b = -\sqrt{V^2 + 4} - \sqrt{(V - U)^2 + 4}.
$$

Not a bound state in the continuum (BIC).

If $V < U < 0$, there exists an odd-parity bound state

$$
E_b = -\sqrt{V^2 + 4} + \sqrt{(V - U)^2 + 4}.
$$

It can be a bound state in the $[-4, +4]$ continuum! For example, if $(V, U) = (-2, -0.5)$, then $E_b = -0.3284$.

The problem of the boundary and completeness From an infinite lattice to a finite lattice:

- \triangleright Now the boundary condition is not so easy to handle
- Bethe equations (for k_1 and k_2) very complicated!
	- \triangleright no idea how to solve them
	- \triangleright no idea how to exhaust the solutions
- \blacktriangleright Are the odd-parity states still in the Bethe-form?
- \blacktriangleright Are all the odd-parity states in the Bethe-form?

The problem of the boundary and completeness From an infinite lattice to a finite lattice:

- \triangleright Now the boundary condition is not so easy to handle
- Bethe equations (for k_1 and k_2) very complicated!
	- \triangleright no idea how to solve them
	- \triangleright no idea how to exhaust the solutions
- \blacktriangleright Are the odd-parity states still in the Bethe-form?
- \blacktriangleright Are all the odd-parity states in the Bethe-form?

Analytically difficult — so do it numerically:

Given a wave function, how to check that it is in the Bethe-form or not? Or, given an array, is it a superposition of (finite) exponentials?

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 ${F_n} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \ldots$

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 ${F_n} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \ldots$

Yes, it is! Because it is the Fibonacci array:

$$
F_{n+2} = F_{n+1} + F_n,
$$

and linear recursive relation implies sum of exponentials! In the transfer-matrix formalism,

$$
\left(\begin{array}{c}F_{n+2}\\F_{n+1}\end{array}\right)=\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right).
$$

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 ${F_n} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...$

Yes, it is! Because it is the Fibonacci array:

$$
F_{n+2} = F_{n+1} + F_n,
$$

and linear recursive relation implies sum of exponentials! In the transfer-matrix formalism,

$$
\left(\begin{array}{c}F_{n+2}\\F_{n+1}\end{array}\right)=\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right).
$$

Actually, De Moivre's formula:

$$
F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].
$$

The reverse is also true

Suppose
$$
(c_i \neq c_j \text{ if } i \neq j)
$$

\n
$$
G_n = w_1 e^{c_1 n} + w_2 e^{c_2 n} + w_3 e^{c_3 n} + w_4 e^{c_4 n}, \quad n \in \mathcal{N}
$$

then

$$
G_{n+4} = r_3 G_{n+3} + r_2 G_{n+2} + r_1 G_{n+1} + r_0 G_n,
$$

regardless of the values of the w 's.

The r's are determined by

$$
\begin{pmatrix} 1 & e^{c_1} & e^{2c_1} & e^{3c_1} \\ 1 & e^{c_2} & e^{2c_2} & e^{3c_2} \\ 1 & e^{c_3} & e^{2c_3} & e^{3c_3} \\ 1 & e^{c_4} & e^{2c_4} & e^{3c_4} \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} e^{4c_1} \\ e^{4c_2} \\ e^{4c_3} \\ e^{4c_4} \end{pmatrix}
$$

Then check it!

Take a slice of f , x_1 = const,

$$
g_{x_2} \equiv f(x_1, x_2) = w_1 e^{ik_1 x_2} + w_2 e^{-ik_1 x_2} + w_3 e^{ik_2 x_2} + w_4 e^{-ik_2 x_2}.
$$

Consider the linear equation

$$
\begin{pmatrix}\ng_n & g_{n+1} & g_{n+2} & g_{n+3} \\
g_{n+1} & g_{n+2} & g_{n+3} & g_{n+4} \\
g_{n+2} & g_{n+3} & g_{n+4} & g_{n+5} \\
g_{n+3} & g_{n+4} & g_{n+5} & g_{n+6}\n\end{pmatrix}\n\begin{pmatrix}\nr_0 \\
r_1 \\
r_2 \\
r_3\n\end{pmatrix}\n=\n\begin{pmatrix}\ng_{n+4} \\
g_{n+5} \\
g_{n+6} \\
g_{n+7}\n\end{pmatrix}.
$$

A necessary condition: r' s independent of n!

$$
r_0 = -1,
$$

\n
$$
r_1 = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2} = -E(k_1, k_2),
$$

\n
$$
r_2 = -(e^{ik_1} + e^{-ik_1})(e^{ik_2} + e^{-ik_2}) - 2,
$$

\n
$$
r_3 = r_1.
$$

 \blacktriangleright The exponents can be determined from the values of the r's

$$
g_{n+4} = r_0 g_n + r_1 g_{n+1} + r_2 g_{n+2} + r_3 g_{n+3}
$$

Odd vs. Even

An example: a 111-site lattice and $(V, U) = (-2, -2)$,

For both open and periodic boundary conditions,

- \blacktriangleright All odd-parity states are in the Bethe-form!
- \blacktriangleright All even-parity states are not in the Bethe-form!

Summary

- \triangleright A half-integrable model
	- \blacktriangleright All odd-parity states are in the Bethe-form
	- \triangleright All even-parity states are NOT in the Bethe-form
- \triangleright A layman's algorithm for Bethe-form checking
- \blacktriangleright Exotic bound states
	- \triangleright Bound states in the continuum
	- \blacktriangleright Bound states at the threshold
- \blacktriangleright How about dynamics? A scattering problem:

(a) A simple publem \mathcal{L}^* (b) A nontrivial problem $\bigwedge_{\rho}\mathcal{C}^{\mathcal{K}}_{\rho} \qquad \rho \qquad \mathcal{K} \qquad \rho \qquad \rho \qquad \rho$

D. Braak, JMZ, and M. Kollar, arXiv:1403.6875; JMZ, D. Braak, and M. Kollar, PRA 87, 023613 (2013); JMZ, D. Braak, and M. Kollar, PRL 109, 116405 (2012)