Exotic bound states and Bethe-ansatz solvability of a two-particle Hubbard model

Jiang-min Zhang (MPI-PKS, Dresden, Germany)

In collaboration with Daniel Braak and Marcus Kollar (Augsburg University)

Oct. 15, 2014

Outline

A simple two-particle Bose-Hubbard model

- similar to the negative Hydrogen ion H⁻ problem
- a bound state in the continuum
- protected by integrability
- Bethe-ansatz
 - only works for the odd-parity states!
 - half-integrable (in a loose sense)
- A Bethe-form checking algorithm
 - no diffraction in the odd-parity subspace
 - diffraction in the even-parity subspace
- A simple but nontrivial scattering problem

A lattice version of the H^- problem

The Hamiltonian (with only two particles):

$$\hat{H} = \sum_{x=-\infty}^{+\infty} \left[-(\hat{a}_x^{\dagger} \hat{a}_{x+1} + \hat{a}_{x+1}^{\dagger} \hat{a}_x) + \frac{U}{2} \hat{a}_x^{\dagger} \hat{a}_x^{\dagger} \hat{a}_x \hat{a}_x \right] + V \hat{a}_0^{\dagger} \hat{a}_0.$$

The motivation:

- How many bound states?
- $\blacktriangleright \text{ Interplay of } U \text{ and } V$

Numerics first (No expectation of integrability)

How to filter a bound state out of the (majority) extended states?

The ultimate criterion: a bound state, unlike an extended state, is insensitive to the boundary or boundary condition.

The algorithm:

- \blacktriangleright solve the eigenstates by exact-diagonalization on a lattice of size M_1
- for each eigenstate calculate the average of

$$D = |x_1| + |x_2|$$

a difference:

 $\begin{cases} D \rightarrow {\rm const}, & {\rm for \ a \ bound \ state}, \\ D \propto M_1, & {\rm for \ an \ extended \ state}. \end{cases}$

▶ repeat the procedure on a larger lattice with M₂ > M₁; Bound states ⇐⇒ fixed D at fixed E

A weird bound state: embedded in the continuum!

An entity predicted by von Neumann & Wigner, Phys. Z. **30**, 465 (1929) admitted by theory:

$$E\psi = [-\nabla^2 + V(r)]\psi \implies V(r) = E + \frac{\nabla^2\psi}{\psi}, \quad \|\psi\| = 1$$

- but not expected in real life!
- omitted in possibly every textbook on quantum mechanics

Hidden integrability!

Bound-state-in-the-continuum is a *non-generic* object

Degeneracy between a localized state ψ_b and an extended state ψ_e is *unstable*.

$$H_{subspace} = \begin{pmatrix} E & \delta \\ \delta & E \end{pmatrix}, \quad \delta \to 0.$$

New eigenstates:

$$\psi_{\pm} = \frac{1}{\sqrt{2}}(\psi_b \pm \psi_e).$$

Both are now extended!

Mott's sharp mobility edges in a disordered lattice!

Bethe Ansatz

Configuration space

- two particles in 1D = one particle in 2D
- infinite lattice assumed

In region I_1 :

$$f = A_1 e^{+ik_1 x_1 + ik_2 x_2} + A_2 e^{+ik_1 x_1 - ik_2 x_2}$$
$$+ A_3 e^{-ik_1 x_1 + ik_2 x_2} + A_4 e^{-ik_1 x_1 - ik_2 x_2}$$
$$+ A_5 e^{+ik_2 x_1 + ik_1 x_2} + A_6 e^{-ik_2 x_1 + ik_1 x_2}$$
$$+ A_7 e^{+ik_2 x_1 - ik_1 x_2} + A_8 e^{-ik_2 x_1 - ik_1 x_2}$$

In regions I_2 and I_3 , A's replaced by B's and C's.

Away from the interfaces:

$$Hf = Ef, \quad E = -2(\cos k_1 + \cos k_2),$$

already satisfied.

Linking the wave functions on the interfaces

A set of 24 linear equations about the 24 unknowns $A{\rm 's},\,B{\rm 's},\,C{\rm 's}.$

- parametrized by k_1 and k_2
- homogeneous

Depending on the **parity** $(x_i \leftrightarrow -x_i)$:

Even-parity,

$$f(x_1, x_2) = +f(-x_1, -x_2),$$

not self-consistent! Ansatz wrong!

Odd-parity,

$$f(x_1, x_2) = -f(-x_1, -x_2),$$

self-consistent!

A subtle fact missed by J. B. McGuire!

Two odd-parity bound states

Suppose V < 0 (The V > 0 case is similar):

▶ If 2V < U < V, there exists an odd-parity bound state

$$E_b = -\sqrt{V^2 + 4} - \sqrt{(V - U)^2 + 4}.$$

Not a bound state in the continuum (BIC).

• If V < U < 0, there exists an odd-parity bound state

$$E_b = -\sqrt{V^2 + 4} + \sqrt{(V - U)^2 + 4}.$$

It can be a bound state in the [-4, +4] continuum! For example, if (V, U) = (-2, -0.5), then $E_b = -0.3284$.

The problem of the boundary and completeness From an infinite lattice to a finite lattice:

- Now the boundary condition is not so easy to handle
- ▶ Bethe equations (for k_1 and k_2) very complicated!
 - no idea how to solve them
 - no idea how to exhaust the solutions
- Are the odd-parity states still in the Bethe-form?
- Are all the odd-parity states in the Bethe-form?

The problem of the boundary and completeness From an infinite lattice to a finite lattice:

- Now the boundary condition is not so easy to handle
- ▶ Bethe equations (for k_1 and k_2) very complicated!
 - no idea how to solve them
 - no idea how to exhaust the solutions
- Are the odd-parity states still in the Bethe-form?
- Are all the odd-parity states in the Bethe-form?

Analytically difficult — so do it numerically:

Given a wave function, how to check that it is in the Bethe-form or not? Or, given an array, is it a superposition of (finite) exponentials?

2	2	3	4	6	19
1	1	2	3	5	2
2	2	3	4	6	1
4	4	5	6	8	8
8	8	9	10	12	0
0	3	5	2	9	1

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 $\{F_n\} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \dots$

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 $\{F_n\} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \dots$

Yes, it is! Because it is the Fibonacci array:

$$F_{n+2} = F_{n+1} + F_n,$$

and **linear recursive relation implies sum of exponentials**! In the transfer-matrix formalism,

$$\left(\begin{array}{c}F_{n+2}\\F_{n+1}\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right) \left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right).$$

A Bethe-form checking algorithm

An example: Is this array a superposition of two exponentials?

 $\{F_n\} = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \dots$

Yes, it is! Because it is the Fibonacci array:

$$F_{n+2} = F_{n+1} + F_n,$$

and **linear recursive relation implies sum of exponentials**! In the transfer-matrix formalism,

$$\left(\begin{array}{c}F_{n+2}\\F_{n+1}\end{array}\right) = \left(\begin{array}{cc}1&1\\1&0\end{array}\right) \left(\begin{array}{c}F_{n+1}\\F_n\end{array}\right).$$

Actually, De Moivre's formula:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

The reverse is also true

Suppose
$$(c_i \neq c_j \text{ if } i \neq j)$$

$$G_n = w_1 e^{c_1 n} + w_2 e^{c_2 n} + w_3 e^{c_3 n} + w_4 e^{c_4 n}, \quad n \in \mathcal{N}$$

then

$$G_{n+4} = r_3 G_{n+3} + r_2 G_{n+2} + r_1 G_{n+1} + r_0 G_n,$$

regardless of the values of the w's.

The r's are determined by

$$\begin{pmatrix} 1 & e^{c_1} & e^{2c_1} & e^{3c_1} \\ 1 & e^{c_2} & e^{2c_2} & e^{3c_2} \\ 1 & e^{c_3} & e^{2c_3} & e^{3c_3} \\ 1 & e^{c_4} & e^{2c_4} & e^{3c_4} \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} e^{4c_1} \\ e^{4c_2} \\ e^{4c_3} \\ e^{4c_4} \end{pmatrix}$$

Then check it!

Take a slice of f, $x_1 = \text{const}$,

$$g_{x_2} \equiv f(x_1, x_2) = w_1 e^{ik_1 x_2} + w_2 e^{-ik_1 x_2} + w_3 e^{ik_2 x_2} + w_4 e^{-ik_2 x_2}$$

Consider the linear equation

$$\begin{pmatrix} g_n & g_{n+1} & g_{n+2} & g_{n+3} \\ g_{n+1} & g_{n+2} & g_{n+3} & g_{n+4} \\ g_{n+2} & g_{n+3} & g_{n+4} & g_{n+5} \\ g_{n+3} & g_{n+4} & g_{n+5} & g_{n+6} \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} g_{n+4} \\ g_{n+5} \\ g_{n+6} \\ g_{n+7} \end{pmatrix}$$

A necessary condition: r's independent of n!

$$r_0 = -1, r_1 = e^{ik_1} + e^{-ik_1} + e^{ik_2} + e^{-ik_2} = -E(k_1, k_2), r_2 = -(e^{ik_1} + e^{-ik_1})(e^{ik_2} + e^{-ik_2}) - 2, r_3 = r_1.$$

.

▶ The exponents can be determined from the values of the *r*'s

$$g_{n+4} = r_0 g_n + r_1 g_{n+1} + r_2 g_{n+2} + r_3 g_{n+3}$$

Odd vs. Even

An example: a 111-site lattice and (V, U) = (-2, -2),

For both open and periodic boundary conditions,

- All odd-parity states are in the Bethe-form!
- All even-parity states are not in the Bethe-form!

Summary

- A half-integrable model
 - All odd-parity states are in the Bethe-form
 - All even-parity states are NOT in the Bethe-form
- A layman's algorithm for Bethe-form checking
- Exotic bound states
 - Bound states in the continuum
 - Bound states at the threshold
- How about dynamics? A scattering problem:

 D. Braak, JMZ, and M. Kollar, arXiv:1403.6875; JMZ, D. Braak, and M. Kollar, PRA 87, 023613 (2013); JMZ, D. Braak, and M. Kollar, PRL 109, 116405 (2012)