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Strategy of the adiabatic hyperspherical representation: FOR ANY NUMBER OF
PARTICLES, convert the partial differential Schroedinger equation into an
infinite set of coupled ordinary differential equations:
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Schroedinger equation, for + > TV(R.0.¢) | P (R:Q)=UL(R)D,(R:A))
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Next expand the desired solution | _
into the complete set of — o (R.())= E F,p(R)P,(R:Q))
,.

eigenfunctions with unknowns F(R)

And the original T.I.S.Eqn. is transformed into the following
set which can be truncated on physical grounds, with the
eigenvalues interpretable as adiabatic potential curves, in
the Born-Oppenheimer sense.
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Typically, to solve this PDE, one expands in
some basis set and diagonalizes:

a R’+8 R’+V(R'H"P) b (R:Q)=U,R)D,(R:Q))
2R 8uR”

* For three particles, we usually use a B-spline basis to directly
solve the coupled PDEs in the two hyperangles = essentially
exact

 For N>3 particles, the most efficient method we have found is
the correlated Gaussian basis set, implemented for
hyperspherical studies by Javier von Stecher, later extended
by Doerte Blume

 Another method that works well for N>3 particles, especially
at small or modest values of the hyperradius R, is the
hyperspherical harmonic expansion, especially if augmented
by a few basis functions designed to handle the two-body
aymptotic channels



Examples

 Macek, J. Phys. B 1, 831 (1968) < first idea of adiabatic

hyperspherical potential curves, for He two-electron excited states
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Universality, from nuclear scale 10.0 N
energies to the chemical ‘He+'He+'He
- - - - - 5‘0
Preliminary results, adiabatic potential ~
curves for n+n+p, in collaboration with 3
Alejandro Kievsky and Kevin Daily, = oo =
nuclear physics on 10° eV scale > \
5/;' 4He2+4He
-5.0 i
Atomic physics
Adiabatic Energy versus hyperradius
—-10.0 | ) | ) I . I f
20! 0 20 40 60 80 100
\ R (a.u.)
e H&H__——_—-_——_—

Nuclear physics

20

3-atom hyperspherical
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He+He+He on a 103 eV
scale, looks very similar to
the 3-nucleon potentials



Another example, a system of 2 positrons and 3 electrons, hyperspherical
potential curves showing multiple fragmentation pathways.

Kevin Daily and CHG, 2014 Phys. Rev. A 89, 012503 (correlated gaussians)
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FIG. 4. (Color online) The lowest adiabatic potential curves with
L™ =07 symmetry for the (4),(—); system in three dimensions.
Dashed, dash-dotted, dash-dot-dotted, and dotted lines are for
(S.,5_) =(1,1/2),(0,1/2),(1,3/2), and (0,3/2), respectively. From
top to bottom, the solid lines indicate the asymptotic limits of break-up
into 2Ps + 7, Ps + Ps™, and Ps; + e, respectively.
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FIG. 1: (Color online) Adiabatic potential curves for L™ =
0" and charge conjugation eigenvalue +1 shown as effective
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Calculations of 4-body
potential curves used the
correlated Gaussian
hyperspherical method

quantum numbers [see Eq. (14)] vs v/R. Panels (a) and (b)

are for (5.,5_) = (0,0) and (1,1), respectively. The thin
solid lines show the known asymptotic behavior through order
The asymptotically ionic channel in (a) is the dash-
dash-dotted line. The dimer-dimer asymptotic thresholds

R

labeled by the angular momentum of the excited Ps.

ny(R) = [—4Uu(R)/Ep — 1]

1 /2

See PRA 89, 012503 (2014)
PRA 80, 022504 (2009)

These “polyelectron” systems

have been studied by many over

the years, Wheeler, Ceperley,
Adhikari, etc....


http://arxiv.org/abs/1409.6518

FIG. 5: {Color online) Charge redistribution probabilities as
a function of scattering energy for S5 and (a) positive or

(b) negative charge conjugation symmetry.

All curves are

for dimer-dimer to ionic transitions and are labeled by the
dimer-dimer threshold. The ionic threshold is —0.262E ;.
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Progress in 3-body understanding via hyperspherical ideas:

1. Understanding the manifestations of Efimov physics in ultracold 3-body
recombination (PRLs: Macek & Nielsen 1999; Burke, CHG, & Esry 1999)
= infinite series of Efimov resonances at a<0 (separated by 22.7)
= infinite series of interference minima at a>0, (separated by 22.7)

2. A quasi-universality of the 3-body parameter for van der Waals interactions,
(homonuclear) = experiment = Grimm group PRL 2010 (Berninger et al.)

- first principles interpretation by Wang, D’Incao, Esry, CHG (2012 PRL) that

approximately az,~ = -9.7 r(vdW)
- newest, even stronger evidence (Naidon et al. 2014 PRL)

- extended prediction for heteronuclear Efimov systems AAB like Li-Cs-Cs,

where the parameter space is far more complicated, since a;,~ is a function of all four of

the following parameters: r(vdW,,), r(vdWg,), ma/mg, a(A-A), i.e. a much more complicated
version of universality even in the best case scenario Wang, Wang, D’Incao, CHG (2012
PRL)

3. Multichannel Efimov scenarios in 3D: Macek & Kartavtsev 2002; Mehta et al
2008 PRA; For spinor systems, see Bulgac & Efimov 1975; Colussi, CHG, &
D’Incao, 2014 PRL




Three-body recombination:

X+X+X— XQ(’U,E) + X+L£iyy

Collision energies: 1 uK = 100 peV



*This Is important for Bose-Einstein
condensates, since the loss of atoms goes as:

% =—-L,n°-L,n’

The 3-body term iIs important at
high density, or whenever L,

gets large, L, oc a’

Large a Is also the same regime where mean-
field theory breaks down, namely na* >1



Vitaly Efimov, 1970 - A three-body
system, whose dimers each have
infinite scattering lengths and no bound
states, must have an infinite number of

trimer bound states.
E

1+1

= E e wheres, =1.00624...is a universalconstant.

General features of
three-body recombination

Three=body shape
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See also: Nielsen
& Macek 1999
PRL, and later

work by Braaten,
Hammer, and

coworkers, e.g.
2006 Phys Rep,

Esry, Greene, Burke, 1999

and Macek,
should be enhanced at an L.
600 . ) Ovchinnikov, and
infinite number of Efimov-
; Gasaneo 2006
like shape resonances as A PRA

approaches —infinity.”



Results . Slide from 2001 Trento talk, showing

1000 e early evidence for universality of the
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Three-body recombination " "length™ versus a
_theory

2006 exp. results
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And experiments have confirmed (and sometimes led) a great
deal of theory concerning 3-body recombination since the late
1990s, so that we now understand.:

Efimov resonances occur at a<0 (an infinite number of these)

Destructive interference minima occur at a>0

The K; ~ a% scaling really is there and it makes it difficult to imagine

exploring the unitary Bose gas where a=>infinity

E (arb. units)

Log (o)

 et+tete

Scattering length a (a,)

(90) 807

Zaccanti et al. Nature
Physics 2009 expt
confirms the a* general
scaling and also
predicted resonance
(a<0) and minima (a>0)
features

An obvious conclusion:
trying to make a BEC at
a-> infinity would be bad

* news, explosive losses,

etc.....



Aside on the Unitary Bose

.La_rge a IS aISO the Sa:me Gas limit, of recent interest:
regime where mean-field
theory breaks down = na’® >1

.e. an interesting case of the unitary Bose gas was
recently explored by Jose D’Incao, in Sykes et al.
PRA 89, 021601(R) (2014), where he found that L,
saturates when ;,° >1 at the unitarity limit except

with: LT — 35\»@5'1'1 (1 _E—ira}ri
T 3 (kpT)? L

But replace kgT => howg

for the $5Rb E:n:périmem[ 21(n 2 5.5 x 102 cm—
and n =~ 0.06 [45]), we find a lifetime of about 0.20 ms.



The Innsbruck experiment generated a flurry of activity from
theorists, attempting to understand this apparent near-
constancy of the 3-body parameter observed experimentally

Origin of the Three-Body Parameter Universality in Efimov Physics
J1a Wang,' J.P. D’Incao,' B.D. EST}*,Z and Chris H. Greene'

PRL 108, 263001 (2012)

Other relevant theoretical work to interpret this result:
Cheng Chin’s toy model (arXiv 2011)

And detailed hyperspherical calculations by Naidon, Endo, &
Ueda:
“"Physical Origin of the Universal Three-body Parameter in
Atomic Efimov Physics" arXiv:1208.3912 (largely confirms our
Interpretation), and more recently, PRL 112, 105301 (2014)

R. Schmidt, S. P. Rath and W. Zwerger, Eur. Phys. J. B
85, 386 (2012).

See also = P. K. Sorensen, D. V. Fedorov, A. S. Jensen, N. T. Zinner,
Phys. Rev. A 86, 052516 (2012).



The “three-body parameter” controlling the first
Efimov resonance location had been thought to
be more or less “random?”, but the new
experimental evidence strongly suggests that it

must be approximately universal:
1) 133Cs (Berninger et al.) PRL 107, 120401 (2011) :

la-|/ L,qn= 9.4, 11.1, 10.4, and 10.3

2) 'Li (Hulet) Science 326, 1683 (2009) : |a-|/ L,4y= 10.0

3) ’Li (Khaykovich) PRL 103, 163202 (2009) :
4) 'Li (Khaykovich) PRL 105, 103203 (2010) :

5) 3¥K (Modungno) Nat. Phys. 5, 586 (2009):

a_

a_

a_

/ Lygy= 8.9
/ Lygy=9.0

/ Lgyy=11.0

6) 85Rb(Cornell-Jin group at JILA) 2012 PRL: |a-|/ L,gy=9.7(2)

Also Roy et al for 39K > PRL 111, 053202 (Eﬂl 3}



3-body hyperspherical potential curves based on 2-body
Lennard-Jones interaction potential with 10 s-wave bound
states, around 100 total, including all angular momentum states
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Figure 5.12: This figure shows the three-body potentials obtained using the v§(A = Aj;) model
supporting a total of 100 bound states. Roughly speaking, the potential of Eq. (5.18) [16] (black
solid line) can be seen as a diabatic potential since it passes near one of the series of avoided
crossings.



PRL 201{2] Jia Wang, D’Incao, Esry, CHG
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FIG. 4: Values for the three-body parameter (a) k. and (b) ag;, as functions of the number n of two-body s-wave bound states
for each of the potential model studied here. (c) Experimental values for ag, for "**Cs [3] (red: x, +, O, and *), **K [4]
(magenta: ), "Li [5] (blue: o) and [6, 7] (green: W and o), °Li [8, 9] (cyan: A and V) and [10, 11] (brown: ¥ and {), and
" Rb [12] (black: ¢). The gray region specifies a band where there is a £15% deviation from the vyqw results. The inset of
Another finding: This property of 3-atom states is not expected to hold for

nuclear systems, which have no van der Waals tail and few bound states. So this

might be re-phrased as a QUASI-Universality of the 3-body parameter



Our study of hyperspherical potentials in the bosonic A+A+A
system, showing that any two atoms “go over the van der
Waals cliff’ when they approach within their vdW radius, and

this rise in kinetic energy produces a repulsive

hyperspherical potential barrier
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Numerical evidence for the existence of a
universal barrier when the two-body
potential has a van der Waals tall
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wavefunction
suppression in 2-
body valleys




Even more convincing is a study of the broad resonance limit of
the 3-body parameter for homonuclear A+A+A systems, and its
dependence on different 2-body interactions,

PRL 112, 105301 (2014):

Microscopic Origin and Universality Classes of the Efimov Three-Body Parameter
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“...In the particular
case of a van der
Waals tail, we obtain
a =-10.86(1) r6, and
kappa = 0.187(1)/r6 in
good agreement with
Ref.25(Wang et al)
and experimental
observations.”

Note: Their excellent
numerics are based on a
separable potential model



Next, what can theory PREDICT for the heteronuclear Efimov

Universal three-bc-d}r parameter in

heteronuclear atomic systems

Yujun Wangq, Jia Wang, J. P. D'Incao, & CHG
PRL 109, 243201 (2012)

Main result: we see that the Efimov physics is also
universal for the case of 2 identical bosonic atoms
(AA) and 1 distinguishable atom (X), but the parameter
space is larger and more complicated. This is because
the universality values predicted depend on the mass
ratio, M,/M,, and on the background A-A scattering
length, and on TWO different vdW radii (A-X and A-A).

(also online at arXiv:1207.6439)



http://arxiv.org/find/physics/1/au:+Wang_Y/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Wang_J/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+DIncao_J/0/1/0/all/0/1
http://arxiv.org/abs/1207.6439

The Efimov effect: universality

For three particles with two
or three resonant interactions
(scattering length a — oc),

an infinite series of three-body
bound states emerge with
E, = Eoe—bmfsu [1]

Heteronuclear system AAX:
Efimov-favored when ma /mx > 1
such thatsy > 1;
Efimov-unfavored when mya /mx <
1 such that sy < 1.

Efimov spectrum

Three-body parameter can be expressed in three-body recombination observ-
ables a” (first Efimov resonance) or a; (first interference minimum).

For identical bosonic atoms, 2° = —9.17,qw [Fvaw = (212Cs)'/*/2].

Universal three-body parameter for AAX?




Key finding: Our numerical evidence suggests that the 3-body
parameter is UNIVERSAL for heteronuclear AAX systems also, but this
universality depends on the AA scattering length, the mass ratio, and the
two van der Waals lengths, and must be mapped out

Efimov-favored AAX systems — universal three-body parameter

l/awn (a.u.)
Universal Efimov spectrum for YbYbLi [1]
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Predictions of first Efimov resonance (negative a) and
destructive interference Stueckelberg minimum (positive a)

S0 80

™

aaa by (A1) aj (au) a” (au.)

Exp|r/s,]

YYho®Li  2.246 2.382 104 [32, 33] 1.3 x 10° —8.4 x 10°

13305, 1.983 2.155
*TRbo®Li  1.633 1.860
UKL L 1.154 1.477
ZNao®Li  0.875 1.269
STRba™K  0.653 1.125
133(0s,%"Rb 0.535 1.060
UKL5"Rb  0.246 0.961

2000 [34]
100 [35]
62 [36]
100 [37]

100
2000
62

06 % 102 —1.4 % 103
3.8 x 102 —1.6 x 10°
3.7 x 102 —2.4 % 10°
1.5 x 10° —1.3 x 10*
2.8 x 10° < —3 x 10*
23 x10° < —4 x 10*
> T7x10° < —1 x 10°

TABLE I: The universal Efimov scaling constants sq, s and
the 3BPs aax = aj, and asx = a” obtained by keeping a4

fixed at its background value (a4 14)-

4.050
4.876
6.847
15.2
36.2
123
355
3.52x10°

Our prediction from this 2012 PRL was that the first Cs-Cs-Li
resonance should appear at either a= -1400 or else -1400/4.88 = -287
a.u. The new Chicago experiment observes a_(expt)=-337(9) a.u.



And the other big piece of excitement comes from the 6Li-
Cs-Cs experiment of Cheng Chin, Shi-Kuang Tung, and
collaborators at the University of Chicago, who have
observed 3 Efimov trimers with approximately the expected

Efimov 4.87 geometric scaling factor between them:

arXiv:1402.5943v1

Observation of geometric scaling of Efimov states in a Fermi-Bose Li1-Cs mixture

Shih-Kuang Tung, Karina Jiménez-Garcia, Jacob Johansen, Colin Parker, and Cheng Chin*
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FIG. 3. Observation of three Li-Cs-Cs Efimov reso-
nances. a. Scaled Li number versus magnetic field showing



Observation of Efimov Resonances in a Mixture with Extreme Mass Imbalance

R. Pires,' J. Ulmanis,' S. Hiifner,' M. Repp,' A. Aras,' E. D. Kuhnle,' and M. Weidemiiller'
lPFwsikaEischfs Institut, Universitit Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelbere, Germany

PRL 112, 250404 (2014)

The first resonance is detected at scattering length of a'”) = =320(10)a,

Theory prediction from our 2012 PRL was that the first Cs-Cs-Li T
resonance should appear at either a= -1400 or else -1400/4.88 = -287 a.u.
The Chicago experiment observes a_(expt)=-337(9) a.u.

The second resonance appears at 5.8(1 'D} a, Ll-l'.]-HE to the unll.;mly—

limited regime at the sample lemp-emlure of 450 nK. Indication of a third resonance is found in the atom
loss spectra. The scaling of the resonance positions is close to the predicted universal scaling value of 4.9
for zero temperature. Deviations from universality might be caused by finite-range and temperature effects,
as well as magnetic field—dependent Cs-Cs interactions.



Spinor systems in few-body and
many-body physics

Most early dilute gas BECs were make of atoms in only one
hyperfine spin substate. But within a few years of
experimental BEC progress, spinor systems were
investigated, in which the number of atoms in different spin
substates is not individually conserved.

e.g. there are collisions between two atoms |f;,m,> and
If,,m,> that can change m1 and m2, processes like:

|1,0> + |1,0>->|1,1> + |1,-1>

These are controlled by two rotationally-invariant scattering
lengths, a, and a, for a system of f=1 atoms. Instead for a
system of f=2 atoms, there are four invariant scattering
lengths controlling the nature of the BEC, namely a,, a,, a,.

Review D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85,
article: 1191 (2013)



Three-Body Physics in Strongly Correlated Spinor Condensates

The idea: when bosonic atoms have a spin ~ 3
degeneracy, the different spin substates can i"-'{r} _ Eﬁi{;} E—r
combine in different ways at large scattering m r
lengths, producing multiple Efimov families with
different universal exponents.

‘El - Z ﬂFEh"FIhMFEh}{F:hMFﬂJ
FEI:-'H.FH:,

TABLE 1. Values of s, relevant for f =1 and 2 spinor (R —1/4
condensates covering all possible regions of R for the different [/ {R} _ “’p'i ) = r"l
ranges of the relevant scattering lengths. For f = 1, we list the ~ * EHRJ
lowest few values of s, for each F5, while for f = 2 we only list

the values of s, and their multiplicity (superscript), instead of the

specific value of F5, where they occur.

(f=1) Fip =1 Fap =2 Fip, =3

R < |.:1,:”_3]| 1.0062i, 2.1662 2.1662 1.0062i, 4.4653
lag| < R < |as] 0.7429 2.1662 1.{}052;, 4.4653
la,| < R < |ay| 0.4097 4 2

R = |EI,:|_:._3]| 2 —1 2
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5,(R)2 = 1/4

UulR) = 2uR?
(f =2) Fyp =0,1,....6
R < |agsa 1.0062i9), 2.16625)
ag| < R < |ay2.4) 1.0062i'%, 0.4905Y)
a| < R < |ag.q) 1.0062i'", 0.7473i'", 0.6608'"
as| < R < |ag 4| 1.0062i"), 0.5528i'"), 0.3788i'"), 0.5219("
aja)| <R < ay 1.0062i'", 0.6608'"
a4y < R < |a; 1.0062i'", 0.5528'Y. 0.5219'V
gy 4| ¥ R < |ayg 0.68611)
R > |ajpa4} 2(5) 4(2)

Thus one could in principle observe multiple Efimov families
In spinor few-body systems, having different characteristic
Efimov exponent parameter s,. This effect has not yet been
observed in experiment.
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FIG. 1 (color online). Fy, = 1 (red solid line), 2 (green dashed E>_<ample Of_ mUItiple
line), and 3 (blue dash-dotted line) hyperspherical adiabatic Efimov families for a
potentials for f =1 spinors with a, = 10Pr 4w and a, = spinor 3-boson
10°ryqw. (a) For R <{ag.a>} (shaded region) two attractive system, homonuclear

potentials exist (both with s, =~ 1.0062i), allowing for two
families of Efimov states, and for R > a;, one of these potentials
tums into an atom-dimer channel |Fo, = 0. My, = 0) + |m; = f}}



Efimov states embedded in the three-body continuum
Mehta, Rittenhouse, D’Incao, CHG PHYSICAL REVIEW A 78, 020701(R) (2008)

Example of the multichannel complexity that arises

Hyperspherical potentials with multiple 3-body thresholds:
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Efimov physics beyond scale invariance and universality: The reality for
most atomic systems is that there will be multiple two-body channel
thresholds, and also therefore multiple 3-body breakup thresholds, as in the
example above.



Summary

1. For atomic few-body systems (but probably not for
nuclear systems), two body physics can predict the
three-body parameter to about 15% or better
accuracy

2. For heteronuclear AAB systems there Iis a more
complicated universality that depends on 4
parameters, but need more experiments/theories

3. Going beyond 4 or 5 patrticles is challenging,
especially for the description of N-body scattering
observables such as recombination or breakup
rates



