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Monte Carlo simulations
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* Bose gas in unitary regime
— quick experimental overview
— quick theoretical overview
* “Variational” Monte Carlo simulations for the homogenous gas
— construction of the many-body wave function - |
— cut-off condition
— construction of the many-body wave function —
— energy per particle
— condensate fraction

* Density Functional Theory for the non-homogeneous gas

— comparison of static properties with VMC

— comparison with GPE

— monopole and quadrupole frequencies

- momentum distribution: comparison with experiment

e conclusions



 The length scale is fixed by 7,
Wg the average distance among
particles
* Expected universal properties
depending only on the density

s-wave scattering length a — o0

effective range re — 0

Unitary Fermi gas largely investigated [see book by Zwenger (Springer, 2012)]
Unitary Bose gas only marginally studied...

| J Unitary Bose gas is experimentally inaccessible [Ho, PRL 2004]

* Positive diverging a The Bose gas is mechanically unstable at low T
means a bOUf‘d state Wg * particles tend to form bound couples and
in the potential well triplets (3 particle loss) [Li & Ho, PRL 2012]

° N? P?U“ s exclusion * self-bound ground state (cluster formation or
principle for Bosons Thomson collapse)

no hope?



Experimental overview
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Universal dynamics of a degenerate unitary
Bose gas

P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell* and D. S. Jin*

e the 3body dynamics that spoils

the unitary regime is slower than
From neutron stees 10 hightemperature superconductors, or couivalently the trap parameien,

stroegly isteracting masy-body systems at or sear guantum  slthoog® ooc thal o =0l intrine 1o | the 2 bOdy one
degeneracy are 2 rich sowrce of intriguisg phenomena. The  arcigeorng bere any cxplail theeeboy
microscopic structure of the first-discovered quastem #id, providean addecoal lengh wale ) Th o

.. * the degenerate Bose gas evolves
unitary Bose gas can be experimentally [+  dynamically on a fast time scale
created and probed i than losses

[ S ———

condensed gas that is suddenly jumped to unitarity, where  of buli (s opposed 1o lattice-cenlined) degenerale Bose s with
o = oo, Contrary 10 expectation, we observe that the gas ves unitarty-limited inleractions. For the degencrate unitary Bose g,

the unitary Bose gas is a metastable state!



Theoretical overview

Experimental lower bound [Salomon & co.w. PRL 2011]

/ J RNG-theory [Lee&Lee PRA 2010]
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No standard technique to face metastable states: results will depends on how the
phases space is restricted!

| J e strong interactions rule out mean-field approaches

 metastability calls for “adjustments” in standard equilibrium
techniques

M. Rossi, L. Salasnich, F. Ancilotto & F. Toigo, PRA 89, 041602(R) (2014)

direct Monte Carlo (MC) simulation of - . i @
N =500 bosons in a cubic box with A
periodic boundary conditions interacting .| e ‘ -
via a square well potential hl /& S, X 2
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square well potential
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In our simulations — < 0.01 & 1073 < < < 10%
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so that we explore also the unitary regime 7. << 79 < Q



pody wave tunction -

e T=0K Ws only 2 body correlations are retained:
* the system is dilute standard Jastrow — Feenberg ansatz

V(P17 i) = [ £UI7 = 75)

1<J
h2k?
* f is the exact solution of the 2 body problem f, with energy ¢ = 5 > ()

m

2 2 2

Asin(kr) O0<r<R K=k + kg

— , 6 = arctan (£ tan(kR)) + kR
rf2(r) { Bsin(kr+6) r>R A :agcsiigc(zgif)an(ﬁ )
inthe R — ( limit the interaction potential I fo (1))’
. . 2 _

can be replaced by the boundary condition hH(l) = ——
[Bethe & Peierls Proc.R.Soc.London A 1935] r— ng (T) a

rfa(r) = Asin(rk + 9) d = arctan(ka)



many-body wave function -

in order to account for many-body effects and for periodic boundary conditions
fg is smoothly joined with a constant at a certain distance R,

f(r):{ fo(r) 0<r <Ry

1 r> R,

the only parameter left is /,,,, which cannot be fixed via a variational approach
(undesired energy minimum for R,,, = 0 )

- standard QMC choice Rm — L/2

Ry
— standard LOCV method choice 47‘(’%/ f22 (T)Tzd’l" =1
[Cowell et al. PRL 2002] 0



...unfortunately when @ diverges the equilibrium configuration is not the desired
uniform gas, but rather a compact cluster

l.\ T L} T T 1 T T L} ] L} T L

Rir, =001 — R by normalization
. —- R _=L72 -
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the extreme compactness is due to the unphysical lack of hard core repulsion in
the interaction potential
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we must correct the wave function to prevent particles to fall too close each other:

we introduce a cut off: , | |
0 0<r <R, | |
1 r> Ry, |

R, is the outermost node of fo(r)

* we tried also a smoother cutoff, but
the energy increases

e the variationally optimized f is as
flat as possiblein 0 < r < R,

e toavoidthat R, > 1o, R is
fixed via the normalization condition

' 1
W
T




thus our many-body wave function:

1. provides the long range correlations dictated by the scattering length

2. keeps the density uniform preventing the formation of clusters

3. keeps the nodes and the normalization of the actual 2body scattering wave
function

this seems reasonable since, due to the extreme diluteness of
the gas, the particle pairs should experience only the tails of f

given the many-body wave function we have direct access to:

E 1 (y|H[s)

TN TN (W)
No

 the condensate fraction — = |_, llm P1 (‘F o r_l D

r—7"|—o00

* the energy per particle e

/)1(|T—"— I—"‘) = /(l’f—’g(l'l—:\rt’ﬂ}(r—y "—')2, f’\)q'](r_ﬁ ’—"2, ens ’F:\r)



it converges to the constant value of 0.70 ¢ as @ — OQ : signature of

universal behavior
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in the weakly interacting regime we recover the universal Bogoliubov

prediction g,y



it converges to the constant value of 0.83
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Theoretical overview

Experimental lower bound [Salomon & co.w. PRL 2011]
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MC data can be fitted with the function ( = a/7¢ )

e(z)/ep =

eray () + asx

3

r <0.3

crx’ + cgx® + s + gt + e3P+ +ixr+cg 0.3<x<0.5
b() + bl tanh(bg/x + 1)

x> 0.5

that allows the computation of other useful quantities via thermodynamic relations

* chemical potent'ial2 7!
« pressure P =n"0,¢
- sound velocity ¢2 = n/m O,

1,5

= Op(ne)

T LRI T T

LRI LRI T T TTITm

 Tan’s 2body contact density
Co = (8mnma?/h?)de /da

25 T T T T

15—

10 |~

1 1l 1
10 10 10° 10 10
a/r0

a =9.02 compares acceptably well with

previous theoretical estimates
[Stoof et al. PRA 2011, arXiv 2013; Sykes et al PRA 2014]



M. Rossi, F. Ancilotto, L. Salasnich & F. Toigo arXiv:1408.3925

time-dependent Density Functional Theory for an inhomogeneous system of
interacting Bosons at zero temperature within the local density approximation

OV (r,t) h2V? d(ney)
1h = | — +U(r) + ——= | ¥U(r,t
ot 2M (r) on (r,?)
[W(r,1)]* = n(r)
£, n) energy per atom of a homogeneous system with
| density n and scattering length a
U(r) = §mw?{($2 +y° + 2°%) external confinement

total energy functional

E = /d3r {%W\P(rﬂ2 + n(r)e,(n(r)) + n(r)U(r)}

as &q (n) we take the MC equation of state




integrated density profile p(z) = /dydz n(zx,y, z)
N =500

100
a = 10%aq

ag = \/h/(mwg)

80

DFT: obtained by imaginary
time propagation 0

VMC: obtained by adding

20
a 1 body term to the
wave function

0
[BuBois & Glyde, PRA 2001] '

...,TN) — @DJ(Tl, ...,TN) | | (& ATy
1=1

good agreement except
near the surface

mainly due to the form of the 1body term, the value
of a is “dominated” by the central region.




CMlz

DFT reduces to Gross-Piatevskii Equation

<r#>12/a,
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b

convergence to a constant
value is expected for the
unitary regime where the
properties of the system
depends only on the density
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monopole (breathing or compressional) mode frequencies are obtained by
slightly changing wg

quadrupole (surface) mode frequencies are obtained by using the initial state
\Ij(ra t= O) = 6277@\1;0 (I‘) -— ground state
/ \ wave function

Q=22°—2°— y2 standard quadrupole operator

small parameter
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3 . o [Castin CRP 2004]
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3 body losses can be accounted including the standard term )
. 2 e L= 200
—ihLsn*(r,t)¥(r,1) R

g
L " o 4
15 1 e wel= V2wr

we can investigate the effects on the collective excitations
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0
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(@)
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2e+05 |- —
| | | | Wm, = 2WH
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wHt/Zrc

a = 10%ag the monopole mode follows the evolution of the average radius
N — 80000 With superimposed oscillations at the expected frequency



few experimental data to compare with: one is the momentum distribution
after a sudden quench to unitary [Conell & co.w. Nat.Phys. 2014]

— e 0us
-t 15us
t*3Sus
t= 100 us
=170 us

a = 140 == g = 500000

HE) (10% pen?)

A quasi-steady-state distribution is reach

10)7 b \J T T T

I T T T T l T T T T I T

20

TDDFT 1o B

2
n(k,t) =N |/dr W(r, t)e™r

<1015 |
X 3
=

quite similar behavior!

Our distribution still evolves on

large time scales as already noted -

with a disspipative GPE approach 1018
[Rancon & Levin PRA 2014]
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we have studied the zero temperature unitary Bose gas via a Jastrow ansatz on

the many-body wave function that avoids the formation of the self-bound

ground state. We have computed the energy per particle € and the condensate

fraction n,

— in the weakly interacting regime we recover the Bogoliubov predictions

— in the unitary regime both € and n, converge to a finite value: signature of the
universal behavior

MC data can be used to extract also other useful information

— via standard thermodynamic relations (u, P, c,, G,...)
— by constructing a density functional theory

TDDFT based on the MC equation of state provides also dynamical properties

- monopole mode: fulfills the expected limiting values

— quadrupole mode

— effect of 3body losses can be included

— (qualitative) comparison with the experimental momentum distribution
evolution after a sudden quench

Thank you for your attention



