Exploring Universality in Efimov Physics

Mario Gattobigio

Santos, Critical Stability 2014

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Work in progress... ... back to Nuclear Physics

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Work in progress... ... back to Nuclear Physics Efimov Effect

Efimov Effect

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

tan² $\xi = E_3/E_2$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

tan² $\xi = E_3/E_2$

Polar coordinates

 $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ tan² $\xi = E_3/E_2$

For each ξ

$$H^{n+1}/H^n \rightarrow 1/22.7$$

Polar coordinates $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ $\tan^2 \xi = E_3/E_2$

For each ξ

$$H^{n+1}/H^n \rightarrow 1/22.7$$

 $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ $\tan^2 \xi = E_3/E_2$

$$H^{n+1}/H^n \rightarrow 1/22.7$$

$$1^{\circ}/11^{\circ} \rightarrow 1/22.1$$

$$=\frac{\hbar^2\kappa_*^2}{m^2}e^{-2(n-n^*)\pi/s_0}e^{\Delta(\xi)/s_0}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_* a = e^{(n-n^*)\pi/s_0} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell = 0$)

 DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell = 0$)

Particle-Dimer Scattering Length

$$a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$$

• d₁, d₂, d₃ Universal Constants

 DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell=0$)

Particle-Dimer Scattering Length

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_*a) + d_3]$

• d₁, d₂, d₃ Universal Constants

Recombination Rate at the threshold

$$K_{3} = \frac{128\pi^{2}(4\pi - 3\sqrt{3})}{\sinh^{2}(\pi s_{0}) + \cosh^{2}(\pi s_{0})\cot^{2}[s_{0}\ln(\kappa_{*}a) + \gamma]} \frac{\hbar a^{4}}{m}$$

v Universal Constant

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Work in progress... ... back to Nuclear Physics

Finite-range Calculations

• N-body calculation using Schrödinger Equation

Finite-range Calculations

- N-body calculation using Schrödinger Equation
- Finite-range potential

$$V(r) = V_0 e^{-r^2/r_0^2}$$

Finite-range Calculations

- N-body calculation using Schrödinger Equation
- Finite-range potential

$$V(r) = V_0 \ e^{-r^2/r_0^2}$$

• Tuning of the Scattering Length

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_* a = e^{(n-n^*)\pi/s_0} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_{3}^{n}/(\hbar^{2}/ma^{2}) = \tan^{2}\xi \\ \kappa_{*}e^{-(n-n^{*})\pi/s_{0}} a = \frac{e^{-\Delta(\xi)/2s_{0}}}{\cos\xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n / (\hbar^2 / m a_B^2) = \tan^2 \xi \\ \kappa_*^n a_B + \Gamma_n^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} & \frac{\hbar^2}{m a_B^2} = \begin{cases} \text{Bound State} & a > 0 \\ \text{Virtual State} & a < 0 \end{cases} \end{cases}$$

$$\begin{cases} E_3^n / (\hbar^2 / m a_B^2) = \tan^2 \xi \\ \kappa_*^n a_B + \Gamma_n^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} & \frac{\hbar^2}{m a_B^2} = \begin{cases} \text{Bound State} & a > 0 \\ \text{Virtual State} & a < 0 \end{cases} \end{cases}$$

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$

 $a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_* a_B + \Gamma_*) + d_3]$

 $a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_* a_B + \Gamma_*) + d_3]$

$$\frac{K_3}{\hbar a^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a) + \gamma]}$$

 $\frac{K_3}{\hbar a_B{}^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a_B + \Gamma_+) + \gamma]}$

 $\frac{K_3}{\hbar a_B{}^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a_B + \Gamma_+) + \gamma]}$

Experimental data - Bound states

Olga Machtey, Zav Shotan, Noam Gross, and Lev Khaykovich Phys. Rev. Lett. 108, 210406 (2012)
Experimental data - Bound states

Olga Machtey, Zav Shotan, Noam Gross, and Lev Khaykovich Phys. Rev. Lett. 108, 210406 (2012)
$$\begin{split} \kappa_1^3 &= 1.6061 \times 10^{-4} a_0^{-1} \\ \Gamma_1^3 &= 4.95 \times 10^{-2} \; . \end{split}$$

Experimental data - Recombination

 $L_3(a) = 3\mathcal{NC}(a)\hbar a^4/m,$

 $\begin{aligned} \mathcal{C}(a) &= 67.12 \, e^{-2\eta_+} [\sin^2(s_0 \log(a/a^+)) + \sinh^2 \eta_+] + 16.84 \, (1 - e^{-4\eta_+}) \\ a^+ &= 1420 \, a_0, \, \eta_+ = 7.5 \times 10^{-2}, \, \mathcal{N} = 5.5 \end{aligned}$

P. Dyke, S. E. Pollack, and R. G. Hulet Phys. Rev. A 88, 023625 (2013)

Experimental data - Recombination

 $L_3(a) = 3\mathcal{NC}(a)\hbar a^4/m,$

 $\begin{aligned} \mathcal{C}(a_{\mathcal{B}}) &= 67.12 \, e^{-2\eta_{+}} [\sin^{2}(s_{0} \log(\kappa_{*} a_{\mathcal{B}} + \Gamma) + 1.16) + \sinh^{2} \eta_{+}] + 16.84 \, (1 - e^{-4\eta_{+}}) \\ \kappa_{*} &= 2.21 \times 10^{-4} a_{0}^{-1}, \text{ and } \Gamma = -1.55 \times 10^{-2}, \eta_{+} = 7.5 \times 10^{-2}, \mathcal{N} = 5.5 \end{aligned}$

P. Dyke, S. E. Pollack, and R. G. Hulet Phys. Rev. A 88, 023625 (2013)

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Work in progress... ... back to Nuclear Physics

N-body Efimov Plot

N-body Efimov Plot

• Two four-body states for each three-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state
- Two six-body states for each five-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state
- Two six-body states for each five-body state

Universal Formula

$$E_N^n/E_2 = an^2 \xi$$
 $\kappa_n^N a_B + \Gamma_n^N = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

Universal Formula

$$E_N^n/E_2 = \tan^2 \xi$$
$$\kappa_n^N a_B + \Gamma_n^N = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

Efimov Straighteners

.

Data on Efimov curve

$$y = \sin \xi \qquad y/x = \tan \xi$$

$$x = \cos \xi \qquad \Rightarrow \qquad x = \cos \xi(x, y) \qquad \qquad E_3^0/E_2 = \tan^2 \xi$$

$$\kappa_0^3 a_B + \Gamma_0^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

Data on Efimov curve

$$y = \sin \xi \qquad y/x = \tan \xi$$
$$x = \cos \xi \qquad x = \cos \xi(x, y)$$

$$E_3^0/E_2 = \tan^2 \xi$$

 $\kappa_0^3 a_B + \Gamma_0^3 = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

$$\gamma(\xi) \stackrel{\text{def}}{=} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

 $y = \sin \xi \qquad y/x = \tan \xi$ $x = \cos \xi \qquad x = \cos \xi(x, y)$

Data on Efimov curve

$$E_3^0/E_2 = \tan^2 \xi$$

 $\kappa_0^3 a_B + \Gamma_0^3 = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

$$\mathbf{y}(\xi) \stackrel{\text{def}}{=} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

$$V(r) = V_0 \ e^{-r^2/r_0^2}$$

Universality up to N = 16

 $\kappa_4=2.147\kappa_3$ - Deltuva, Few-Body Syst 54, 569 (2013)

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Work in progress... ... back to Nuclear Physics Efimov and Nuclear Physics

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

• Two control parameter a_0 and a_1
$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

• Two control parameter a_0 and a_1

• How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

• Two control parameter a_0 and a_1

• How to organize data? We fix $\tan \varphi = a_1/a_0$

$$an^2 \, \xi = E_3 / E_2^{(1)} \ y(\xi) = \kappa_* a_B^{(1)} + \Gamma$$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 \, e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 \, e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 \, e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 \, e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 \, e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 \, e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 \, e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 \, e^{-(r/R_1)^2} \mathcal{P}_1$$

• Two control parameter a_0 and a_1

• How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 \, e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 \, e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

•
$$\gamma(\xi) = \kappa_* a_B^{(1)} + a + \beta a_1/a_0$$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a_0 and a_1
- How to organize data? We fix $\tan \varphi = a_1/a_0$

•
$$\gamma(\xi) = \kappa_* a_B^{(1)} + a + \beta a_1/a_0$$

• Better way to analyse? Ex. $\tan^2 \xi = E_3 / (1/a_0^2 + 1/a_1^2)$

$$V(r,\sigma_1 \cdot \sigma_2) = V_0 e^{-(r/R_0)^2} \mathcal{P}_0 + V_1 e^{-(r/R_1)^2} \mathcal{P}_1$$

- Two control parameter a₀ and a₁
- How to organize data? We fix $\tan \varphi = a_1/a_0$

•
$$\gamma(\xi) = \kappa_* a_B^{(1)} + a + \beta a_1/a_0$$

- Better way to analyse? Ex. $\tan^2 \xi = E_3 / (1/a_0^2 + 1/a_1^2)$
- Explore the Nuclear plane $a_1/a_0 = -0.228$
 - Use of a three-body force
 - Look at the light-nuclei spectrum

 $(1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 +$

 $(1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1}$

Universality and Scaling Finite-Range corrections A. Kievsky, M.G. M.G., A. Kievsky Phys. Rev. A 87, 052719 (2013) Phys. Rev. A 90, 012502 (2014) Recombination at the threshold E. Garrido, M.G., A. Kievsky Phys. Rev. A 88, 032701 (2013) Study up to N = 16A. Kievsky, N.K. Timofeyuk, M.G. Phys. Rev. A 90, 032504 (2014)

Finite-Range corrections A. Kievsky, M.G. Phys. Rev. A 87, 052719 (2013) Recombination at the threshold E. Garrido, M.G., A. Kievsky Phys. Rev. A 88, 032701 (2013)

> Study up to N = 16A. Kievsky, N.K. Timofeyuk, M.G. Phys. Rev. A 90, 032504 (2014)

> > Thanks!

Origin of the Shift

$$\hbar^2 H^2 / m = E_3 + E_2$$

tan²(ξ) = E_3 / E_2

$$\hbar^2 H^2 / m = E_3 + E_2$$

tan²(ξ) = E_3 / E_2

$$\Psi \propto A e^{i s_0 \log(HR)} + B e^{-i s_0 \log(HR)}$$

$$R \approx \ell : \quad A = e^{2i\Theta_*}B$$
$$\Theta_* = -s_0 \log(H/\Lambda_0)$$
$$P \approx e : \quad A = e^{i\Delta(\xi)}P$$

$$\hbar^2 H^2 / m = E_3 + E_2$$

tan²(ξ) = E_3 / E_2

$$\hbar^2 H^2/m = E_3 + E_2$$
 $an^2(\xi) = E_3/E_2$

 $\Psi \propto A e^{i s_0 \log(HR)} + B e^{-i s_0 \log(HR)}$

$$R \approx \ell : \quad A = e^{2i\theta_*}B$$
$$\theta_* = -s_0 \log(H/\Lambda_0)$$

$$R \approx a$$
: $A = e^{i\Delta(\xi)}B$

Bound State $2\Theta_* + \Delta(\xi) = 2\pi n$ $H = \Lambda_0 e^{\Delta(\xi)/2s_0} e^{-\pi n/s_0}$

$$\hbar^2 \mathcal{H}^2/m = \mathcal{E}_3 + \mathcal{E}_2$$

 $an^2(\xi) = \mathcal{E}_3/\mathcal{E}_2$

 $\Psi \propto A e^{i s_0 \log(HR)} + B e^{-i s_0 \log(HR)}$

$$R \approx \ell : \quad A = e^{2i\theta_*}B$$
$$\theta_* = -s_0 \log(H/\Lambda_0)$$

$$R \approx a$$
: $A = e^{i\Delta(\xi)}B$

 $\begin{array}{l} \mbox{Bound State}\\ 2\Theta_*+\Delta(\xi)=2\pi n\\ \mbox{$\mathcal{H}=\Lambda_0\,e^{\Delta(\xi)/2s_0}\,e^{-\pi n/s_0}$} \end{array}$

$$\Lambda_0 a = \mathrm{e}^{2\pi n/s_0} \, \mathrm{e}^{-\Delta(\xi)/s_0} / \cos \xi$$

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

$$\Lambda_0 = \kappa_*$$

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

• Zero-range parameterization of $\Delta(\xi)$

$$\Lambda_0 = \kappa_*$$

• Finite-range case

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

$$\Lambda_0 = \kappa_*$$

- Finite-range case
 - Parametrization of $\Delta(\xi)$ unchanged

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

$$\Lambda_0 = \kappa_*$$

- Finite-range case
 - Parametrization of $\Delta(\xi)$ unchanged
 - V(R) changes

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

$$\Lambda_0 = \kappa_*$$

- Finite-range case
 - Parametrization of $\Delta(\xi)$ unchanged
 - V(R) changes

$$\Lambda_0 = \kappa_* (1 + \mathcal{A}\ell/a)$$

Bound State

$$\Lambda_0 a = e^{-\Delta(\xi)/s_0}/\cos\xi$$

• Zero-range parameterization of $\Delta(\xi)$

$$\Lambda_0 = \kappa_*$$

Finite-range case

- Parametrization of $\Delta(\xi)$ unchanged
- V(R) changes

$$\Lambda_0 = \kappa_* (1 + \mathcal{A}\ell/a)$$

• Shift ...

$$\kappa_* a + \Gamma = e^{-\Delta(\xi)/s_0} / \cos \xi$$
$$\Gamma = \mathcal{A} \kappa_* \ell$$

• Effective Range Function

 $\begin{array}{l} \mbox{Zero-range interaction } (\ell=0) \\ ka \cot \delta = c_1(ka) + c_2(ka) \cot [s_0 \ln (\kappa_* a) + \phi (ka)] \end{array} \end{array}$

• $c_1(ka), c_2(ka), \varphi(ka)$ Universal Functions

• Effective Range Function

 $\begin{array}{l} \mbox{Zero-range interaction } (\ell=0) \\ ka \cot \delta = c_1(ka) + c_2(ka) \cot [s_0 \ln (\kappa_* a) + \phi (ka)] \end{array} \end{array}$

• $c_1(ka), c_2(ka), \varphi(ka)$ Universal Functions

Finite-range interaction ($\ell \neq 0$) $ka_B \cot \delta = c_1(ka) + c_2(ka) \cot[s_0 \ln(\kappa'_*a) + \varphi(ka)]$ $E_2 = \hbar^2 / ma_B^2$ and $\kappa'_* = \kappa_* + \Gamma / a$

Efimov and Light Nuclei

0.546 MeV [2] 0 A = 2	$\frac{0.599 \text{ MeV } [3] 0^{\circ}}{8.465 \text{ MeV } [3] 0^{\circ}}$ $A = 3$	8.562 MeV [4] 0*		
		30.418 MeV [4] 0* A = 4	28.72 MeV [4 1] 0" 31.72 MeV [5] 0" 43.03 MeV [4 1] 1"	
70 50 40 20 10 -10 -20 -30 -40 0 1	Volkov's Potential	5	<u>68.28 MeV [5] 0*</u> A = 5	66.49 MeV [4 2] 0* 70.28 MeV [5 1] 0* 73.49 MeV [6] 0* 122.78 MeV [6] 0* A = 6

Efimov and Light Nuclei

